Full metadata record
DC FieldValueLanguage
dc.contributor.authorLu, HHSen_US
dc.contributor.authorChen, CMen_US
dc.contributor.authorYang, IHen_US
dc.date.accessioned2014-12-08T15:49:23Z-
dc.date.available2014-12-08T15:49:23Z-
dc.date.issued1998-02-01en_US
dc.identifier.issn0278-0062en_US
dc.identifier.urihttp://hdl.handle.net/11536/32836-
dc.description.abstractAn efficient new method, termed as the crossreference weighted least square estimate (WLSE) [CRWLSE], is proposed to integrate the incomplete local smoothness information to improve the reconstruction of positron emission tomography (PET) images in the presence of accidental coincidence events and attenuation. The algebraic reconstruction technique (ART) is applied to this new estimate and the convergence is proved. This numerical technique is based on row operations. The computational complexity is only linear in the sizes of pixels and detector tubes, Hence, it is efficient in storage and computation for a large and sparse system. Moreover, the easy incorporation of range limits and spatially variant penalty will not deprive the efficiency. All this makes the new method practically applicable. An automatically data-driven selection method for this new estimate based on the generalized cross validation is also studied, The Monte Carlo studies demonstrate the advantages of this new method.en_US
dc.language.isoen_USen_US
dc.subjectalgebraic reconstruction techniqueen_US
dc.subjectgeneralized cross validationen_US
dc.subjectregularizationen_US
dc.subjectweighted least square estimateen_US
dc.titleCross-reference weighted least square estimates for positron emission tomographyen_US
dc.typeArticleen_US
dc.identifier.journalIEEE TRANSACTIONS ON MEDICAL IMAGINGen_US
dc.citation.volume17en_US
dc.citation.issue1en_US
dc.citation.spage1en_US
dc.citation.epage8en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000073646700001-
dc.citation.woscount11-
Appears in Collections:Articles


Files in This Item:

  1. 000073646700001.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.