Full metadata record
DC FieldValueLanguage
dc.contributor.authorLIN, SSen_US
dc.date.accessioned2014-12-08T15:04:49Z-
dc.date.available2014-12-08T15:04:49Z-
dc.date.issued1992-08-01en_US
dc.identifier.issn0002-9947en_US
dc.identifier.urihttp://dx.doi.org/10.2307/2154195en_US
dc.identifier.urihttp://hdl.handle.net/11536/3330-
dc.description.abstractWe study the existence of positive nonradial solutions of equation DELTA-u + f(u) = 0 in OMEGA(a) , u = 0 on partial derivative-OMEGA(a) , where OMEGA(a) = {x is-an-element-of R(n) : a < x < 1} is an annulus in R(n) , n greater-than-or-equal-to 2 , and f is positive and superlinear at both 0 and infinity . We use a bifurcation method to show that there is a nonradial bifurcation with mode k at a(k) is-an-element-of (0, 1) for any positive integer k if f is subcritical and for large k if f is supercritical. When f is subcritical, then a Nehari-type variational method can be used to prove that there exists a* is-an-element-of (0, 1) such that for any a is-an-element-of (a* , 1) , the equation has a nonradial solution on OMEGA(a) .en_US
dc.language.isoen_USen_US
dc.subjectNONRADIAL SOLUTIONen_US
dc.subjectBIFURCATION METHODen_US
dc.subjectVARIATIONAL METHODen_US
dc.titleEXISTENCE OF POSITIVE NONRADIAL SOLUTIONS FOR NONLINEAR ELLIPTIC-EQUATIONS IN ANNULAR DOMAINSen_US
dc.typeArticleen_US
dc.identifier.doi10.2307/2154195en_US
dc.identifier.journalTRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETYen_US
dc.citation.volume332en_US
dc.citation.issue2en_US
dc.citation.spage775en_US
dc.citation.epage791en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:A1992JH76100017-
dc.citation.woscount14-
Appears in Collections:Articles


Files in This Item:

  1. A1992JH76100017.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.