Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | LIN, SS | en_US |
dc.date.accessioned | 2014-12-08T15:04:49Z | - |
dc.date.available | 2014-12-08T15:04:49Z | - |
dc.date.issued | 1992-08-01 | en_US |
dc.identifier.issn | 0002-9947 | en_US |
dc.identifier.uri | http://dx.doi.org/10.2307/2154195 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/3330 | - |
dc.description.abstract | We study the existence of positive nonradial solutions of equation DELTA-u + f(u) = 0 in OMEGA(a) , u = 0 on partial derivative-OMEGA(a) , where OMEGA(a) = {x is-an-element-of R(n) : a < x < 1} is an annulus in R(n) , n greater-than-or-equal-to 2 , and f is positive and superlinear at both 0 and infinity . We use a bifurcation method to show that there is a nonradial bifurcation with mode k at a(k) is-an-element-of (0, 1) for any positive integer k if f is subcritical and for large k if f is supercritical. When f is subcritical, then a Nehari-type variational method can be used to prove that there exists a* is-an-element-of (0, 1) such that for any a is-an-element-of (a* , 1) , the equation has a nonradial solution on OMEGA(a) . | en_US |
dc.language.iso | en_US | en_US |
dc.subject | NONRADIAL SOLUTION | en_US |
dc.subject | BIFURCATION METHOD | en_US |
dc.subject | VARIATIONAL METHOD | en_US |
dc.title | EXISTENCE OF POSITIVE NONRADIAL SOLUTIONS FOR NONLINEAR ELLIPTIC-EQUATIONS IN ANNULAR DOMAINS | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.2307/2154195 | en_US |
dc.identifier.journal | TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY | en_US |
dc.citation.volume | 332 | en_US |
dc.citation.issue | 2 | en_US |
dc.citation.spage | 775 | en_US |
dc.citation.epage | 791 | en_US |
dc.contributor.department | 交大名義發表 | zh_TW |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | National Chiao Tung University | en_US |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:A1992JH76100017 | - |
dc.citation.woscount | 14 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.