Full metadata record
DC FieldValueLanguage
dc.contributor.authorLEE, HSen_US
dc.contributor.authorCHANG, RCen_US
dc.date.accessioned2014-12-08T15:05:02Z-
dc.date.available2014-12-08T15:05:02Z-
dc.date.issued1992en_US
dc.identifier.issn0020-7160en_US
dc.identifier.urihttp://hdl.handle.net/11536/3562-
dc.description.abstractWe consider the following problem: Find a set of parallel straight lines with equal spacing to hit all m grid points in a closed region bounded by a convex polygon P with n vertices such that size of this set is minimal. We use continued fraction expansions to explore the combinatorial properties of this problem and propose an O(n + log m) approximation algorithm which guarantees finite performance ratio.en_US
dc.language.isoen_USen_US
dc.subjectAPPROXIMATION ALGORITHMen_US
dc.subjectCONTINUED FRACTION EXPANSIONSen_US
dc.subjectHITTING SET PROBLEMen_US
dc.subjectNUMBER THEORYen_US
dc.titleCOVERING GRID POINTS IN A CONVEX POLYGON WITH STRAIGHT-LINESen_US
dc.typeArticleen_US
dc.identifier.journalINTERNATIONAL JOURNAL OF COMPUTER MATHEMATICSen_US
dc.citation.volume42en_US
dc.citation.issue3-4en_US
dc.citation.spage137en_US
dc.citation.epage156en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:A1992JL15500002-
dc.citation.woscount0-
Appears in Collections:Articles