Full metadata record
DC FieldValueLanguage
dc.contributor.authorHSU, YJen_US
dc.date.accessioned2014-12-08T15:05:05Z-
dc.date.available2014-12-08T15:05:05Z-
dc.date.issued1991-12-01en_US
dc.identifier.issn0002-9939en_US
dc.identifier.urihttp://dx.doi.org/10.2307/2048782en_US
dc.identifier.urihttp://hdl.handle.net/11536/3617-
dc.description.abstractLet M be a compact minimally immersed surface in the unit sphere S3, and let S denote the square of the length of the second fundamental form of M. We prove that if parallel-to S parallel-to 2 less-than-or-equal-to 2 square-root 2-pi, then M is either the equatorial sphere or the Clifford torus.en_US
dc.language.isoen_USen_US
dc.titleA GLOBAL PINCHING THEOREM FOR COMPACT MINIMAL-SURFACES IN-S3en_US
dc.typeArticleen_US
dc.identifier.doi10.2307/2048782en_US
dc.identifier.journalPROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETYen_US
dc.citation.volume113en_US
dc.citation.issue4en_US
dc.citation.spage1041en_US
dc.citation.epage1044en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:A1991GV69300019-
dc.citation.woscount2-
Appears in Collections:Articles


Files in This Item:

  1. A1991GV69300019.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.