Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | HSU, YJ | en_US |
dc.date.accessioned | 2014-12-08T15:05:05Z | - |
dc.date.available | 2014-12-08T15:05:05Z | - |
dc.date.issued | 1991-12-01 | en_US |
dc.identifier.issn | 0002-9939 | en_US |
dc.identifier.uri | http://dx.doi.org/10.2307/2048782 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/3617 | - |
dc.description.abstract | Let M be a compact minimally immersed surface in the unit sphere S3, and let S denote the square of the length of the second fundamental form of M. We prove that if parallel-to S parallel-to 2 less-than-or-equal-to 2 square-root 2-pi, then M is either the equatorial sphere or the Clifford torus. | en_US |
dc.language.iso | en_US | en_US |
dc.title | A GLOBAL PINCHING THEOREM FOR COMPACT MINIMAL-SURFACES IN-S3 | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.2307/2048782 | en_US |
dc.identifier.journal | PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY | en_US |
dc.citation.volume | 113 | en_US |
dc.citation.issue | 4 | en_US |
dc.citation.spage | 1041 | en_US |
dc.citation.epage | 1044 | en_US |
dc.contributor.department | 交大名義發表 | zh_TW |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | National Chiao Tung University | en_US |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:A1991GV69300019 | - |
dc.citation.woscount | 2 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.