完整後設資料紀錄
DC 欄位語言
dc.contributor.authorFu, CMen_US
dc.contributor.authorFu, HLen_US
dc.contributor.authorRodger, CAen_US
dc.date.accessioned2014-12-08T15:01:31Z-
dc.date.available2014-12-08T15:01:31Z-
dc.date.issued1997-08-15en_US
dc.identifier.issn0378-3758en_US
dc.identifier.urihttp://hdl.handle.net/11536/366-
dc.description.abstractA critical set C of order n is a partial latin square of order n which is uniquely completable to a latin square, and omitting any entry of the partial latin square destroys this property. The size s(C) of a critical set C is the number of filled cells in the partial latin square. The size of a minimum critical set of order n is s(n). It is likely that s(n) is approximately 1/4n(2), though to date the best-known lower bound is that s(n)greater than or equal to n+1. In this paper, we obtain some conditions on C which force s(C)greater than or equal to[(n-1)/2](2). For n > 20, this is used to show that in generals(n)greater than or equal to[(7n-3)/6], thus improving the best-known result. (C) 1997 Elsevier Science B.V.en_US
dc.language.isoen_USen_US
dc.subjectlatin squaresen_US
dc.subjectcritical setsen_US
dc.subjectdesign constructionen_US
dc.titleThe minimum size of critical sets in latin squaresen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF STATISTICAL PLANNING AND INFERENCEen_US
dc.citation.volume62en_US
dc.citation.issue2en_US
dc.citation.spage333en_US
dc.citation.epage337en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
顯示於類別:期刊論文


文件中的檔案:

  1. A1997XR82100013.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。