完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Fu, CM | en_US |
dc.contributor.author | Fu, HL | en_US |
dc.contributor.author | Rodger, CA | en_US |
dc.date.accessioned | 2014-12-08T15:01:31Z | - |
dc.date.available | 2014-12-08T15:01:31Z | - |
dc.date.issued | 1997-08-15 | en_US |
dc.identifier.issn | 0378-3758 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/366 | - |
dc.description.abstract | A critical set C of order n is a partial latin square of order n which is uniquely completable to a latin square, and omitting any entry of the partial latin square destroys this property. The size s(C) of a critical set C is the number of filled cells in the partial latin square. The size of a minimum critical set of order n is s(n). It is likely that s(n) is approximately 1/4n(2), though to date the best-known lower bound is that s(n)greater than or equal to n+1. In this paper, we obtain some conditions on C which force s(C)greater than or equal to[(n-1)/2](2). For n > 20, this is used to show that in generals(n)greater than or equal to[(7n-3)/6], thus improving the best-known result. (C) 1997 Elsevier Science B.V. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | latin squares | en_US |
dc.subject | critical sets | en_US |
dc.subject | design construction | en_US |
dc.title | The minimum size of critical sets in latin squares | en_US |
dc.type | Article | en_US |
dc.identifier.journal | JOURNAL OF STATISTICAL PLANNING AND INFERENCE | en_US |
dc.citation.volume | 62 | en_US |
dc.citation.issue | 2 | en_US |
dc.citation.spage | 333 | en_US |
dc.citation.epage | 337 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
顯示於類別: | 期刊論文 |