Full metadata record
DC FieldValueLanguage
dc.contributor.author李彥賢en_US
dc.contributor.authorYan-Sian Lien_US
dc.contributor.author戈正銘en_US
dc.contributor.authorZheng-Ming Geen_US
dc.date.accessioned2014-12-12T01:15:38Z-
dc.date.available2014-12-12T01:15:38Z-
dc.date.issued2007en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009514582en_US
dc.identifier.urihttp://hdl.handle.net/11536/38574-
dc.description.abstract本論文由三部分構成:(1)以相圖、龐卡萊映射圖、分岐圖、功率譜及Lyapunov指數圖等數值方法研究Mathieu – Duffing系統的渾沌行為。(2)用適應逆步控制在不同的初始條件下的兩個Mathieu – Duffing雙系統對不同的渾沌系統Duffing – van der Pol系統與 系統的實用混合投影渾沌同步及辛渾沌同步。(3)應用部分區域穩定性理論研究廣義渾沌同步、渾沌控制及實用混合投影渾沌同步。zh_TW
dc.description.abstractThis thesis consists of three parts: (1) the chaotic behaviors of are studied numerically by phase portraits, Poincaré maps, bifurcation diagrams, power spectrum and Lyapunov exponent diagrams. (2) system is studied for pragmatical hybrid projective hyperchaotic generalized synchronization (PHPHGS) and pragmatical hybrid projective and symplectic synchronization (PHPSS) with different kinds of different chaotic systems, Duffing-van der Pol system and system, by adaptive backstepping control. (3) chaotic generalized synchronization, chaos control and pragmatical hybrid projective generalized synchronization is studied by partial region stability theory.en_US
dc.language.isoen_USen_US
dc.subjectMathieu – Duffing系統zh_TW
dc.subject實用混合投影渾沌同步zh_TW
dc.subject應用部分區域穩定性理論zh_TW
dc.subject適應逆步控制zh_TW
dc.subjectMathieu–Duffing systemen_US
dc.subjectadaptive backstepping controlen_US
dc.subjectGYC partial region stability theoryen_US
dc.subjectGYC pragmatical asymptotical theoremen_US
dc.subjectSymplectic synchronizationen_US
dc.title新Mathieu-Duffing 系統的渾沌現象與其應用適應逆步控制及部分區域穩定理論之實用混合投影渾沌同步及辛渾沌同步zh_TW
dc.titleChaos and Pragmatical Hybrid Projective and Symplectic Chaos Synchronization of a New Mathieu-Duffing System by Adaptive Backstepping Control and by Partial Region Stability Theoryen_US
dc.typeThesisen_US
dc.contributor.department機械工程學系zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 458201.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.