完整後設資料紀錄
DC 欄位語言
dc.contributor.author方孟竹en_US
dc.contributor.authorMong-Jhu Fangen_US
dc.contributor.author魏恆理en_US
dc.contributor.author賴明治en_US
dc.contributor.authorHenryk Witeken_US
dc.contributor.authorMing-Chih Laien_US
dc.date.accessioned2014-12-12T01:16:53Z-
dc.date.available2014-12-12T01:16:53Z-
dc.date.issued2007en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009522511en_US
dc.identifier.urihttp://hdl.handle.net/11536/38872-
dc.description.abstract在很多科學的領域,例如物理和化學,有時必須對角化大型的對稱矩陣。最常用來找一些極特徵根的方法是Davidson和Jacobi-Davidson方法。在這篇論文中,我們同時提出和測試一個命名為『sweep』的方法,它是一個用來找對稱矩陣極特徵根的好工具。在為數不少的帶狀矩陣中,sweep方法比Davidson和Jacobi-Davidson方法表現來的好。失去擴充向量的正交化是一個從這些方法延伸出來的重大問題。我們發現解決它的方式是正交化兩次。在未來,我們需要用更多不同形式的矩陣來驗證sweep方法的效能。zh_TW
dc.description.abstractIn many scientific fields like physics and chemistry one often has to diagonalize large symmetric matrices. The two most popular methods of finding extreme eigenvalues of such large matrices are Davidson and Jacobi-Davidson methods. In this thesis we propose and test a new method, called “sweep method”, that is an efficient tool for finding extreme eigenvalues of large symmetric matrices. We have found that it has better performance than Davidson and Jacobi-Davidson methods for a large class of band matrices. A serious numerical problem obeserved for all these methods is the loss of orthogonality among the expansion vectors. We have found tha a way to avoid this problem is doing two reorthogonalizations. In the future, we need more different types of matrices to confirm the efficiency of the sweep method.en_US
dc.language.isoen_USen_US
dc.subject矩陣對角化zh_TW
dc.subject對稱矩陣的極特徵配對zh_TW
dc.subject疊代方法zh_TW
dc.subjectmatrix diagonalizationen_US
dc.subjectextremal eigenpairs of symmetric matricesen_US
dc.subjectiterative methodsen_US
dc.title尋找對稱矩陣的極特徵根之疊代方法zh_TW
dc.titleIterative Methods for Finding Extreme Eigenvalues of Symmetric Matricesen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 251101.pdf
  2. 251102.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。