標題: | 在基因晶片中關鍵基因之選取方法 Gene Selection Methods |
作者: | 彭郃嵐 Ho-Lan Peng 洪慧念 Hui-Nien Hung 統計學研究所 |
關鍵字: | 基因選取;gene selection;OS;ORT;COPA |
公開日期: | 2007 |
摘要: | 在分子生物學的領域上,利用統計方法分析基因晶片的資料已成為一種趨勢。若能因此發掘出造成疾病的關鍵基因,對人類會有重要的貢獻。本篇文章中,基於致病基因會在生病的群體中有異常的表現,我們提供一些統計方法能在眾多基因中找出可能致病的關鍵基因。這些方法包含了 WORT、 WOS、PGM、TGM、QGM,以及 BRP。我們也將這些方法與過去曾經被發表的 T-statistic、OS、OR 以及COPA等四個方法做比較。 It's a trend to use statistical methods in medical science. If the genes which cause the diseases could be found, it might be helpful to nowadays medical field. In this article, we proposed several methods to find the probable influential genes which are over- or down-expressed in some but not all samples in a disease group. Those methods include WORT (weight outlier robust t-statistic), WOS (weight outlier sum), PGM (the MLE of probability of Gaussian mixture model), TGM (T-statistic of Gaussian mixture model), QGM(Quantile of Gaussian mixture model), and Bayesian Rule P-value(BRP). Also we will compare those methods with four methods (t-statistic, OS, ORT, COPA) which have been proposed and published for detecting differentially expressed genes. Those new methods include improvements of ORT and OS methods, four methods related to Gaussian mixture model and Bayesian method. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT009526501 http://hdl.handle.net/11536/38983 |
Appears in Collections: | Thesis |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.