完整後設資料紀錄
DC 欄位語言
dc.contributor.author彭郃嵐en_US
dc.contributor.authorHo-Lan Pengen_US
dc.contributor.author洪慧念en_US
dc.contributor.authorHui-Nien Hungen_US
dc.date.accessioned2014-12-12T01:17:21Z-
dc.date.available2014-12-12T01:17:21Z-
dc.date.issued2007en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009526501en_US
dc.identifier.urihttp://hdl.handle.net/11536/38983-
dc.description.abstract在分子生物學的領域上,利用統計方法分析基因晶片的資料已成為一種趨勢。若能因此發掘出造成疾病的關鍵基因,對人類會有重要的貢獻。本篇文章中,基於致病基因會在生病的群體中有異常的表現,我們提供一些統計方法能在眾多基因中找出可能致病的關鍵基因。這些方法包含了 WORT、 WOS、PGM、TGM、QGM,以及 BRP。我們也將這些方法與過去曾經被發表的 T-statistic、OS、OR 以及COPA等四個方法做比較。zh_TW
dc.description.abstractIt's a trend to use statistical methods in medical science. If the genes which cause the diseases could be found, it might be helpful to nowadays medical field. In this article, we proposed several methods to find the probable influential genes which are over- or down-expressed in some but not all samples in a disease group. Those methods include WORT (weight outlier robust t-statistic), WOS (weight outlier sum), PGM (the MLE of probability of Gaussian mixture model), TGM (T-statistic of Gaussian mixture model), QGM(Quantile of Gaussian mixture model), and Bayesian Rule P-value(BRP). Also we will compare those methods with four methods (t-statistic, OS, ORT, COPA) which have been proposed and published for detecting differentially expressed genes. Those new methods include improvements of ORT and OS methods, four methods related to Gaussian mixture model and Bayesian method.en_US
dc.language.isoen_USen_US
dc.subject基因選取zh_TW
dc.subjectgene selectionen_US
dc.subjectOSen_US
dc.subjectORTen_US
dc.subjectCOPAen_US
dc.title在基因晶片中關鍵基因之選取方法zh_TW
dc.titleGene Selection Methodsen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 650101.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。