標題: 漢語和英語中的數詞組對比分析
An Analysis of Numeral Expressions in English and Chinese
作者: 葉怡君
Yeh, Yi-Chun Joanna
劉辰生
Liu, Chen-Sheng
外國語文學系外國文學與語言學碩士班
關鍵字: 抽象名詞;對等連接詞;X-bar 理論;對等連接詞結構;附加結構;abstract noun;co-ordination;X-bar theory;conjunction phrase (ConjP);adjunction
公開日期: 2008
摘要: 本篇論文的基本假設視數字為總和的概念。數詞詞組之所以獨特,正是因為其表達方式與真實語言中的文法不同,且數詞詞組的表達方式,主要經由算術上的加法所組成。在相關領域的研究中,最著名的為語言學家Hurford所稱‘數字的文法’系統,他嘗試整合表面的文法和真實語言裡的句法學。藉此,這篇論文將會詳細解釋在X-bar理論結構下的數詞表達方式。為此,數詞詞組首先必須被視為與文章脈絡無相關且連續並排而成的字串。此外,數詞詞組在句法學上,必須被納入抽象名詞的範疇中,即使再小的數詞也是如此。這篇論文主張數詞詞組的表達方式,由累計的對等連接詞組(&P) ,進而形成連接詞詞組(ConjP)。具體來說,數詞詞組表達方式之主張根據Munn所提倡的&P分析,或稱為Boolean Phrase (BP)而來,而它所累計的對等連接詞組,則是從右邊節點加接進來 (right node adjunction)。此結構充分適用於英文的數詞詞組,因為對等連接詞 ‘and’ 在PF上是不可或缺的;但對於中文的數詞詞組而言,&P並不能完全符合且通用,其主要原因為中文數詞表達中的對等連接詞‘又’是隱藏的。最後,這篇論文試圖證明&P這樣的分析方式,將適用於中文和英文的數詞詞組表達方式,並強調就算在中文數詞詞組隱藏對等連接詞(&)的情況下也適用。 關鍵字﹕抽象名詞,對等連接詞,X-bar 理論,對等連接詞結構, 附加結構
The fundamental assumption of this thesis is that numbers are sums. This means that numerical expressions are primarily composed of notations for the arithmetical operation of addition that exists outside the ordinary syntax of language. Hurford (1975, 2003), the most eminent researcher of numerical expressions, calls this external system “the grammar of numbers,” and he makes little attempt to integrate this external grammar with the ordinary syntax of language. This thesis, however, does attempt to account for numerical expressions within the framework of standard X-bar theory. To do this, it must be recognized that numerals exist as word strings that are free of context and that are arranged as paratactic concatenations. Moreover, it must be recognized that all numerals, even small lexical numerals, should be categorized syntactically as abstract nouns. Furthermore, when numerals are combined through addition they form nominal compounds. It follows, then, that co-ordination offers the best syntactical interpretation of numerical expressions. This thesis argues that numerical expressions can be configured as conjunction phrases (ConjP) of a specifically cumulative type called “and” phrases (&P). Specifically, it is argued that numerical expressions are best configured by following Munn’s (1993) analysis of &P, or what he calls the Boolean Phrase (BP), as right node adjunction. This configuration works well for English numerical expressions, because the conjunction “and” is integral to such expressions at PF, but the &P configuration is problematic for Chinese numerical expressions, because the conjunction you that heads the phrase remains covert. In the end, this thesis suggests evidence that the &P analysis does work for both English and Chinese numerical expressions, despite the apparent problem of the covert & in Chinese numerals. Keywords: abstract noun; co-ordination; X-bar theory; conjunction phrase (ConjP); adjunction
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009545523
http://hdl.handle.net/11536/39393
顯示於類別:畢業論文


文件中的檔案:

  1. 552301.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。