完整後設資料紀錄
DC 欄位語言
dc.contributor.author駱嘉濠en_US
dc.contributor.authorChia-Hao Loen_US
dc.contributor.author彭文志en_US
dc.contributor.authorWen-Chih Pengen_US
dc.date.accessioned2014-12-12T01:18:54Z-
dc.date.available2014-12-12T01:18:54Z-
dc.date.issued2007en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009555502en_US
dc.identifier.urihttp://hdl.handle.net/11536/39457-
dc.description.abstract之前的研究已點出關於最佳化和地理位置值域的跨值域分群問題。然而,之前的研究既沒有明確地定義地理位置值域連續性限制,也沒有提出足夠效率的演算法。本篇論文定義了跨值域分群問題的連續性限制。在此本篇論文著重的問題裡,使用者必須制定連續性限制的參數和分群數量。我們提出的演算法「K-means with Local Search 」(簡稱為 KLS)由三個階段組成:轉換階段、粗略分群階段以及微調分群階段。首先,將符合連續性限制的資料以 ConGraph 表示(ConGraph意為 CONnected Graph)。接著,藉由ConGraph的協助,加上K-means和 local search 的概念,我們設計了一個有效率的粗略分群法。最後,將粗略分群的結果在最少的準確度損失下,微調成符合使用者要求的分群數。我們的實驗結果顯示出 KLS 能夠正確且有效率地完成分群。zh_TW
dc.description.abstractPrior works have elaborated on the problem of joint clustering in the optimization and geography domains. However, prior works neither clearly specify the connected constraint in the geography domain nor propose efficient algorithms. In this paper, we formulate the joint clustering problem in which a connected constraint and the number of clusters should be specified. We propose an algorithm K-means with Local Search (abbreviated as KLS) consisting of three phases: the transformation phase, the coarse clustering phase and the fine clustering phase. First, data objects that fulfill the connected constraint is represented as the ConGraph (standing for CONnected Graph). In light of the ConGraph, by adapting the concept of K-means and local search, an algorithm is devised to coarsely cluster objects for the purpose of efficiency. Then, these coarse cluster results are fine tuned to minimize the dissimilarity of the data objects in the optimization domain. Our experimental results show that KLS can find correct clusters efficiently.en_US
dc.language.isoen_USen_US
dc.subject地理zh_TW
dc.subject跨值域分群zh_TW
dc.subjectgeographyen_US
dc.subjectjoint clusteringen_US
dc.title快速跨最佳和地理值域分群法zh_TW
dc.titleEfficient Joint Clustering Algorithms in Optimization and Geography Domainsen_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 550201.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。