完整後設資料紀錄
DC 欄位語言
dc.contributor.author羅偉力en_US
dc.contributor.author蔡錫鈞en_US
dc.date.accessioned2014-12-12T01:19:13Z-
dc.date.available2014-12-12T01:19:13Z-
dc.date.issued2008en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009555573en_US
dc.identifier.urihttp://hdl.handle.net/11536/39526-
dc.description.abstract此篇論文中,我們探討在二維平面上尋找特定密度之矩形的方法。當二維平面退化成一維時,此問題已有最佳解O(nlogn)。若特定密度趨近無窮大,則有線性解O(n)。zh_TW
dc.description.abstractWe define the density finding problem on a rectangle(DFR for short) as follows. Given an m-by-n rectangle R, each unit block is attached with a value and a weight. A subrectangle S in R is an m′-by-n′ rectangle where 1 <= m′ <= m and 1 <= n′ <= n. The value(weight) of S is the sum of the value(weight) of each block in S. Let A and W be the value and weight of S respectively. The goal is to find a subrectangle S in R such that the density of S is closest to a specified real number δ, where the density of S is defined as the ratio of A and W, and L <= W <= U for two specified positive numbers L and U. When m = 1, Luo et al. [10] give a O(nlog n) time solution. Moreover, if δ → ∞, Chung et al. [5] and Bernholt et al. [3] both give O(n) time solutions in different ways. In this thesis, we will give a O(m^2nlog n) time solution for any δ and O(m^2n) time solution if δ → ∞ when m < n. Besides, we show that solving DFR takes Omega(mnlog n) when m < n.en_US
dc.language.isoen_USen_US
dc.subject密度找尋zh_TW
dc.subject演算法zh_TW
dc.subject時間複雜度zh_TW
dc.subjectDensity Findingen_US
dc.subjectAlgorithmen_US
dc.subjectTime Complexityen_US
dc.title最大密度矩形之找尋問題zh_TW
dc.titleDensity Finding on a Rectangleen_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 557301.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。