完整後設資料紀錄
DC 欄位語言
dc.contributor.author陳證中en_US
dc.contributor.authorCheng Chung Chenen_US
dc.contributor.author莊仁輝en_US
dc.contributor.authorJen Hui Chuangen_US
dc.date.accessioned2014-12-12T01:19:52Z-
dc.date.available2014-12-12T01:19:52Z-
dc.date.issued2007en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009557547en_US
dc.identifier.urihttp://hdl.handle.net/11536/39699-
dc.description.abstract在本篇論文中,我們針對紅外線影像,提出一個新的前景物偵測方法。此方法推廣傳統的高斯混合模型,加入了位置變數以對於整張影像而非每一像素,建立數個「區域高斯模型」,因此所建立的高斯模型數量會比傳統的高斯混合模型少很多。建立起始的背景模型後,之後影像中每一像素是以一個5 5的鄰近區塊,來對前一張影像做區域高斯模型的比對,再以最符合的區域高斯模型做更新。實驗結果會看到在攝影機移動不大的情況下,利用本論文之方法在區分紅外線影像的前景跟背景確實能獲得較佳的結果。zh_TW
dc.description.abstractIn this thesis, we propose a novel method of foreground object detection for infrared images. We generalize the Gaussian Mixture Model (GMM) to construct a new Regional Gaussian Mixture Model (RGMM), by adding two random variables of image coordinates. Since the models are built for the whole image, not for every image pixel, the number of RGMM is much smaller than that of GMM for common videos. After an initial background construction, the RGMMs are updated by examining the existence of previous RGMMs in a 5 5 neighborhood for each image pixel, followed by the identification of the best-fit model which is then used in the update process. Experimental results show that better separation of foreground object from background can be achieved by using RGMM for infrared images obtained by a camera with small movements.en_US
dc.language.isozh_TWen_US
dc.subject偵測zh_TW
dc.subject物體偵測zh_TW
dc.subject紅外線影像zh_TW
dc.subject監控系統zh_TW
dc.subjectDetectionen_US
dc.subjectObject Detectionen_US
dc.subjectInfrared Imagesen_US
dc.subjectSurveillance Systemen_US
dc.title紅外線影像中之前景物偵測zh_TW
dc.titleA Novel Method of Foreground Object Detection in Infrared Imagesen_US
dc.typeThesisen_US
dc.contributor.department多媒體工程研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 754701.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。