Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 莊淵凱 | en_US |
dc.contributor.author | Chuang, Yuan-Kai | en_US |
dc.contributor.author | 張翼 | en_US |
dc.date.accessioned | 2014-12-12T01:20:54Z | - |
dc.date.available | 2014-12-12T01:20:54Z | - |
dc.date.issued | 2008 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT009575526 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/40014 | - |
dc.description.abstract | 隨著半導體元件製程的日新月異,積體電路的電路佈局也愈來愈複雜,電晶體的尺寸也越做越小。當閘極(Gate Electrode)長度也因此變短時,其下方的電流通道也會跟著被縮短,雖然這是元件縮小化的結果,但是通道的尺寸是不可能無限制地縮小下去的,否則隨之而來的問題將一一浮現,如:短通道效應(Short Channel Effect, SCE)。 爲了改善以上可能會發生的現象,超淺型接面(Ultra-Shallow Junction, USJ)之超低能量佈植技術與能量污染控制將變得相當重要。 在現階段發展中的離子植入設備中,使用漂移電場模式(Drift-Mode)是最理想的工作模式。因為其最初離子束的能量等於最終植入晶片的能量,幾乎沒有能量污染的問題。但是,當所需要植入的能量爲了減低因尺寸縮小降低到約2KeV甚至更低時,因為低能量離子束的空間電荷(Space Charge)限制住離子的萃取率和遷移效率,如果繼續使用漂移電場模式,就會開始遇到晶片表面離子束電流跟著下降的問題產生,使得生產效率也跟著下降。 爲了解決此問題,減速模式(Decel-Mode)成為現階段最有效的解決方案。減速電場模式先以較高的萃取能量,使經由萃取後的離子束能量比預期高很多,在到達晶片前利用電場使之減速,達到預期的低能量。但是以如此形成的低能量植入,伴隨而來的缺點就是能量污染(Energy Contamination, EC)的問題。在加速離子減速之前,加速離子和通道中的氣體分子產生連續碰撞和電荷交換,最後成為不帶電的中性原子,而不能被減速電場作用,而帶著最初的高能量,隨離子束一起被植入晶片中,造成能量污染。這將使電晶體中源極/汲極延伸區域(Source Drain Extend, SDE)離子濃度輪廓縱深分布出現部分過深現象,進而影響電晶體的電性。本論文以單晶片離子植入原型機作為實驗設備,並驗證以多電極電場偏移方式使超低能量離子束的能量污染得以控制。另外,藉由以超低能量硼(Boron)離子束實施以下實驗並驗證其成果,並加以分析: ◆ 片電阻匹配分析(RS、SIMS) ◆ 硼(Boron)離子活化分析(RS-Xj Chart) ◆ EOR(End Of Range)損壞分析(XTEM) ◆ 去光阻後之參雜維持率分析(RS、SIMS) | zh_TW |
dc.description.abstract | With the flourishing development of semiconductor technology。The layout of the integrated circuit is more and more complicated,and the transistor size is more and more tiny also. It is the certain result that the current channel becomes shorter below the gate electrode due to the transistor size. But it is impossible to reduce the channel size unlimitedly or the electric effect will be emerged from that. For example:Short Channel Effect。 For improve the issue above,the energy contamination in ultra-low implantation of the Ultra-Shallow Junction becomes very important. The Drift-Mode is the ideal mode for the current ion implanter machine。 Due to the beam current is the same through the whole beam line path。 Due to space charge limits in low energy ion beam transport,it is necessary to extract ion beams at high energy then to the target energy。 It will affect the current beam current below the target then lower production rate。 For solve the issue,the decel mode is the more effective method。 It is use the higher extract energy then decelerate to the target energy before implant to the wafer。 But the Energy Contamination will appear during the implantation。Energy Contamination due to energetic neutral particles that result from charge exchanges between beam ions and beamline residual gas molecules before and during deceleration。 The thesis will use the single prototype ion implanter be the experiment equipment,and verify the energy contamination in ultra-low energy implantation by the bias of the electrical field。 In additional,the experiment result will be verified then analysis by the low boron energy implantation below: □ RS Matching Analysis(RS、SIMS) □ Boron Activation Analysis(RS-Xj Chart) □ EOR Damage Analysis(XTEM) □ Dose retation condition after PR strip(RS、SIMS) | en_US |
dc.language.iso | zh_TW | en_US |
dc.subject | 離子植入 | zh_TW |
dc.subject | 能量污染控制 | zh_TW |
dc.subject | Energy contamination control | en_US |
dc.title | 超低能量離子植入之能量污染控制 | zh_TW |
dc.title | Energy contamination control in ultra-low energy ion implantation | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 工學院半導體材料與製程設備學程 | zh_TW |
Appears in Collections: | Thesis |