完整後設資料紀錄
DC 欄位語言
dc.contributor.author周鴻案en_US
dc.contributor.author陳永富en_US
dc.date.accessioned2014-12-12T01:20:56Z-
dc.date.available2014-12-12T01:20:56Z-
dc.date.issued2008en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT009577517en_US
dc.identifier.urihttp://hdl.handle.net/11536/40029-
dc.description.abstract本論文是研究利沙球圖形與擺線的幾何轉換。利沙球圖形與擺線皆在幾何曲線中扮演非常 重要角色。然而過去的研究中並沒有對於這兩群重要的幾何曲線有任何相關性的連結。我的 研究首先利用在物理系統中常見的簡諧運動為基礎,進而解得其古典軌跡落在利沙球圖形 上。進一步透過群論中SU(2)矩陣的巧妙轉換,發展出一系列介於利沙球圖形與擺線之間有 趣的幾何曲線。透過SU(2)轉換的概念不僅引導出有趣的幾何圖像,其中所對應的物理意義 也值得我們深入探討。zh_TW
dc.description.abstractThis thesis is the research of the geometric transformstion between Lissajous and trochoidal curves. Lissajous and trochoidal curves are important in geometric curves. However there is not any connection between Lissajous and trochoidal curves in early researches. Firstly, we start from the simple harmonic motions, and the solution is found as Lissajous parametric curves. Furthermore, by means of the transformation, the matrix SU(2) in group theory , a series of curves between Lissajous and trochoids are demonstrated. They have not been discussed until now. Through the concept of SU(2), we obtained the intriguing geometric curves. Importantly, the physics of the transformation is worthy to discussed further in the future.en_US
dc.language.isozh_TWen_US
dc.subject幾何曲線zh_TW
dc.subject曲線轉換zh_TW
dc.subjectgeometric curvesen_US
dc.subjectSU(2)en_US
dc.subjecttransformationen_US
dc.title從利沙球圖形到擺線間的幾何轉換zh_TW
dc.titleGeometric Transformation from Lissajous to Trochoid Curves and Surfacesen_US
dc.typeThesisen_US
dc.contributor.department理學院應用科技學程zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 751701.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。