Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsao, Yu-Pingen_US
dc.contributor.authorChang, Gerard J.en_US
dc.date.accessioned2014-12-08T15:05:28Z-
dc.date.available2014-12-08T15:05:28Z-
dc.date.issued2007-10-01en_US
dc.identifier.issn1382-6905en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10878-007-9061-9en_US
dc.identifier.urihttp://hdl.handle.net/11536/4007-
dc.description.abstractThe profile minimization problem arose from the study of sparse matrix technique. In terms of graphs, the problem is to determine the profile of a graph G which is defined as P(G) = min(f) Sigma(v epsilon V(G)) max(x epsilon N[v]) (f(v) - f(x)), where f runs over all bijections from V(G) to {1,2,...,vertical bar V(G)vertical bar} and N[v] = {v} boolean OR {x epsilon V(G): xv epsilon E(G)}. This is equivalent to the interval graph completion problem, which is to find a super-graph of a graph G with as few number of edges as possible. The purpose of this paper is to study the profiles of compositions of two graphs.en_US
dc.language.isoen_USen_US
dc.subjectprofileen_US
dc.subjectcompositionen_US
dc.subjectinterval graphen_US
dc.subjectchordal graphen_US
dc.subjectsimplicial vertexen_US
dc.subjectjoinen_US
dc.subjectcycleen_US
dc.titleProfile minimization on compositions of graphsen_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.doi10.1007/s10878-007-9061-9en_US
dc.identifier.journalJOURNAL OF COMBINATORIAL OPTIMIZATIONen_US
dc.citation.volume14en_US
dc.citation.issue2-3en_US
dc.citation.spage177en_US
dc.citation.epage190en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000248864800008-
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000248864800008.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.