Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Chia-Fenen_US
dc.contributor.authorFu, Hung-Linen_US
dc.date.accessioned2014-12-08T15:05:31Z-
dc.date.available2014-12-08T15:05:31Z-
dc.date.issued2007-10-01en_US
dc.identifier.issn1382-6905en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10878-007-9062-8en_US
dc.identifier.urihttp://hdl.handle.net/11536/4041-
dc.description.abstractFor a permutation f of the vertex set V(G) of a connected graph G, let delta(f) (x,y)=vertical bar d(x,y) - d(f(x),f(y))vertical bar. Define the displacement delta(f) (G) of G with respect to f to be the sum of delta(f) (x,y) over all unordered pairs {x,y} of distinct vertices of G. Let pi(G) denote the smallest positive value of delta(f) (G) among the n! permutations f of V(G). In this note, we determine all trees T with pi(T) = 2 or 4.en_US
dc.language.isoen_USen_US
dc.subjectnear automorphismen_US
dc.subjecttreeen_US
dc.subjecttotal relative displacementen_US
dc.titleNear automorphisms of trees with small total relative displacementsen_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.doi10.1007/s10878-007-9062-8en_US
dc.identifier.journalJOURNAL OF COMBINATORIAL OPTIMIZATIONen_US
dc.citation.volume14en_US
dc.citation.issue2-3en_US
dc.citation.spage191en_US
dc.citation.epage195en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000248864800009-
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000248864800009.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.