标题: | 论隐藏在蛋白质结构的动态资讯 To extract dynamics information from a single protein structure |
作者: | 施建华 Shih, Chien-Hua 黄镇刚 Hwang, Jenn-Kang 生物资讯及系统生物研究所 |
关键字: | 蛋白质动态;热扰动;分子模拟;蛋白质结构;序列保留;演化;protein dynamics;thermal fluctuations;molecular dynamics;protein structure;sequence conservation;evolution |
公开日期: | 2011 |
摘要: | 蛋白质的三级结构与其功能有紧密的相关。蛋白质结构不仅仅只是一个固定的结构而是一个动态的结构。研究显示蛋白质的功能受到影响来自于远离功能处一个胺基酸突变,其原因来自其突变改变了蛋白质的动态稳定。因此研究蛋白质的动态结构可以帮助我们了解蛋白质的功能与机制。分子动态模拟是基于原子与原子间各项的化学作用力,一般可用来分析蛋白质的动态及其功能的关系。但是,蛋白质结构动态模拟非常的消耗电脑的计算能量以及需要长时间的模拟。因此我们发展出了数个利用蛋白质三级结构推演出其内部原子的动态资讯而不需要任何化学作用力的机制。我们的方法非常快速可以得到蛋白质的动态资讯且的到的动态资讯而且算出的动态资讯跟实验与模拟的结果一致。这篇论文第一想阐明蛋白质的结构隐含了其蛋白质动态资讯,更进一步的指出不需要胺基酸的资讯。第二、想藉由研究蛋白质酵素内的执行催化的胺基酸来研究结构资讯与动态资讯是否可以找出的执行催化的胺基酸的特征。第三、藉这些执行催化的胺基酸在蛋白质序列演化上是高度保留的,我们发现结构资讯,动态资讯及演化资讯有高度相关性。并且,仅由蛋白质结构资讯就可以精确的推出其动态资讯与演化资讯,其精确程度可以达到单一胺基酸的程度,相较于之前的研究只能探讨平均的趋势有极大的优势。最后我们展示出蛋白质与蛋白质之间的交互作用的交界面可以利用结构资讯与演化资讯相互搭配来找出。 Protein structure is closely related to its function. However, protein structure is not static, due to its constant thermal fluctuations. A mutation in a residue far away from the active site will greatly affect a protein’s function. Therefore, knowledge of protein dynamics will help shed light on protein function. Molecular Dynamics simulation, which is based on molecular mechanics, is a powerful tool to compute protein’s trajectories, from which useful dynamical properties can be derived for the analysis of the relationship between protein structure and its function. However, molecular simulation is computationally expensive, and becomes impractical to simulate large proteins. Here, we have developed geometry-based approaches to derive atomic thermal fluctuations from a single protein structure without using mechanical model. Our approaches are fast and comparable with molecular simulation to reproduce thermal fluctuation from a single structure. This thesis will start with our recent work to extract atomic fluctuations and motional correlation directly from protein structures through several commonly models. The results from sophisticated to simple models all suggest that dynamics are determined by structures. Then, catalytic residues are usually evolutionary conserved; thus evolutionary information from homologous sequences is essential in prediction of catalytic residues. In our studies, dynamics information from structures can predict better catalytic residues than evolutionary information. Therefore, we illustrate that the evolutionary information are hidden in a single structure. Finally, we will show that the coevolution between proteins in complex might be identified by the relationship between structure and conservation. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079451803 http://hdl.handle.net/11536/40916 |
显示于类别: | Thesis |