标题: 应用于无线近身网路之低功耗基频收发器设计
Low-Power Baseband Transceiver Designs for Wireless Body Area Network Applications
作者: 陈灿文
Chen, Tsan-Wen
李镇宜
Lee, Chen-Yi
电子研究所
关键字: 无线近身网路;正交分频多工;多音分码多工;峰对均值;功率放大器;非线性功率放大器;讯号成分分解器;放大效率;基频收发器;WBAN;OFDM;MT-CDMA;PAPR;Linear PA;Noninear PA;SCS;LINC;Outphasing;Baseband transceiver
公开日期: 2011
摘要: 无线近身网路是专门用来搜集监测身体讯号以提供可靠的生理资讯。为了达到长时间的连续医疗照护监测,可靠的讯号传输、低功耗、微小化为无线近身网路设计的基本需求。
本论文提出一个具有两种调变之基频收发器,其调变方式包含了多音分码多工与正交分频多工两种,以分别因应多使用者共存(可允许8个使用者同时使用)以及某些需要高资料传输率的应用需求。基于对于无线近身网路系统行为的分析,本论文提出相对应的低功耗技术,例如:提高资料传输率、用于生理讯号储存的记忆元件设计最佳化、以及其他低功耗的硬体实现等。另一方面,为了达到系统整合的微小化,本论文也提供一个可调相位频率的时脉产生器与频率预先补偿技术来提高系统对于频率误差的容忍度(可提高至100 ppm ),以供未来系统整合当中,取代传统用来提供时脉之石英震荡器。而所提出的基频收发器晶片组已由90奈米标准CMOS制程实现,此晶片组可操作在0.5伏特,并提供最高4.85 Mbps的传输速度,且调变器的功耗仅有5.52 μW。
由系统的功耗分析,无线传输模组的功耗占最大比例的系统平均功耗,尤其是前端射频的功率放大器电路。由于采用多载波调变之讯号的震幅变化范围较大,在避免讯号失真的考量之下,功率放大器的效率大幅地降低。因此,本论文介绍LINC (Linear amplification by nonlinear components) 技术来改善功率放大电路之效率,其概念为将原本具有相位与震幅调变的讯号利用讯号成分分解器分解成两路仅带有相位资讯的讯号,此两路讯号即可使用高效率非线性放大器来放大,接着将两路放大后的讯号相加,即可还原我们想到的讯号。此论文特别专注在讯号成分分解器之设计,我们采用全数位相位调变式的实现架构来避免高速数位类比转换器以及正交调制器的使用,另外,本论文也提出一个两路偏差校正的机制并整合于讯号成分分解器中以减轻前端高频电路的设计复杂度。此讯号成分分解器以90奈米标准CMOS制程晶片实现,藉由低复杂度的电路设计与低功耗技术,此讯号成分分解器操作在中频100 MHz,其功耗小于1 mW,另外此设计也可提供0.02 dB增益与0.15度相位补偿精准度,大幅减轻前端高频电路的设计负担。
本论文也更进一步介绍LINC技术的进阶效能改良技术-非对称多阶LINC (Uneven multi-level LINC, UMLINC),用来减少两路讯号相加时造成的功耗浪费,此技术需要功率放大器提供两种不同的增益,但系统的放大效率可由原本LINC的13.08%大幅改善至44.82%。然而,两路偏差的问题在不同放大器增益模式下也变得更加复杂,本论文也提出改良的讯号分解方法,可以将两路偏差的问题在讯号分解过程中补偿。为了用于非对称多阶LINC系统,进阶的讯号成分分解器使用相同的制程完成晶片实现与验证,可根据输入讯号震幅动态的提供放大器增益控制,并同时产生对应的相位调变讯号,利用低功耗技术与电路设计,此设计功耗为0.65 mW,采用非对称多阶LINC技术搭配本论文提出的低功耗讯号成分分解器,整体无线传输模组的功耗可减少80.23%。应用于提出的无线近身网路应用中,多音分码多工模式的系统平均功耗可由原来的1626 μW下降至518 μW,当采用正交分频多工模式时,系统平均功耗也可由211 μW 减至 132 μW。
Wireless body area network (WBAN) is an emerging technology which is specifically designed for body signal collection and monitoring to provide reliable physical information. In order to achieve long duration monitoring for biotelemetry applications, the WBAN system is required to provide reliable signal transmission, ultra-low power operation, and highly integrated tiny area for comfortable purposes.
This dissertation first introduces a dual-mode baseband transceiver chipset for wireless body area network (WBAN) system. The modulation schemes include multi-tone code division multiple access (MT-CDMA) and orthogonal frequency division multiplexing (OFDM) to meet multi-user coexistence (up to 8) and high data rate purposes. Based on the analysis of the WBAN operation behavior, several methods including higher data rate, optimal storage determination, and low power implementation techniques are proposed to reduce the transmission energy. To achieve tiny area integration, an embedded phase frequency tunable clock generator and frequency error pre-calibration scheme are provided to extend the frequency mismatch tolerance to 100 ppm (2.5x of state-of-the-art systems). The baseband transceiver chipset is manufactured in 90 nm standard CMOS process. Working at supply voltage of 0.5 V, this chipset is able to provide maximum date rate of 4.85 Mbps with modulator power consumption of 5.52 □W.
From the system power analysis, the power dominant of the proposed WBAN solution is the active power of the wireless transmission link, especially the power amplifier (PA) due to the poor efficiency. Accordingly, linear amplification by nonlinear components (LINC) is introduced to improve the amplifier efficiency. The basic concept is to separate the original phase-and-amplitude modulated signal into two phase-only-modulated signals, then these two signals can be amplified by high-efficiency nonlinear PAs. Then the desired signal can be reconstructed by combining these two amplified signals. This dissertation focuses on the signal component separator (SCS) design. An all-digital phase-modulated SCS architecture, including the phase calculation DSP and a digitally-control phase shifter (DCPS) pair, is proposed in this work to avoid the usage of DACs and quadrature modulators. Besides, this SCS design also considers the branch mismatch issue and presents a digital mismatch detection and compensation scheme, which can be integrated in the SCS without increasing the front-end circuit complexity. The proposed SCS design is manufactured in 90 nm standard CMOS process. The overall SCS operating at maximum 100 MHz consumes less than 1 mW which minimizes the power overhead of the LINC transmitter, and it further provides a 0.02 dB gain and 0.15o phase fine-tune resolution to release the front-end design complexity.
Besides, the uneven multi-level LINC (UMLINC) is introduced for further efficiency improvement. Assuming the PA can provide dual gain mode, the efficiency can be improved from 13.08% to 44.82% (3.44x improvement comparing to LINC). The branch mismatch consideration is also considered during the region boundaries decision of the signal separation. An all-digital SCS chip, which provides the PA gain controls and corresponding phase-modulated signals for UMLINC systems, is manufactured in 90 nm standard CMOS process. By applying the voltage scaling and low power techniques, the power cost of UMLINC SCS is only 0.65 mW. With the proposed UMLINC SCS, 80.23% transmitter power can be reduced comparing to conventional transmitter with a linear PA. Applying this technique to the proposed WBAN system, the average system power can be reduced from 1626 μW to 518 μW for MT-CDMA mode and from 211 μW to 132 μW for OFDM mode respectively.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079511847
http://hdl.handle.net/11536/41070
显示于类别:Thesis