标题: | 多闸极多通道电晶体特性扰动暨 奈米裂缝场发射特性之研究 Multi gate FET random dopant fluctuation and nanogap field emission |
作者: | 郑惠文 Cheng, Hui-Wen 李义明 Li, Yi-Ming 电信工程研究所 |
关键字: | 多闸极多通道立体电晶体;变流器;静态随机存取记忆体;随机掺杂扰动;线边缘扰动;元件电路模拟;奈米级钯金属裂缝;场发射效率;表面传导电子发射体;三维有限差分时域粒子式电磁模拟方法;Multi-fin FinFET;Inverter;SRAM;Random dopant fluctuation;Line edge roughness;Mix-mode simulation;nanoscale Pd think-film strip;Field emission efficiency;surface conduction electron-emitter;3D FDTD-PIC |
公开日期: | 2012 |
摘要: | 金氧半场效应电晶体通道长度微缩至32奈米之后,仍保有高性能之立体矽场效电晶体,因而备受学/业界注目,但唯有完整了解其元件特性才能助于延续摩尔定律。本研究探讨闸极具不同长宽比(aspect ratio/AR)之16奈米三通道立体矽场效电晶体的电特性,就元件特性而言,发现单通道之鳍式场效电晶体(AR = 2),比起具单通道之三闸极场效电晶体(AR = 1)与类平面场效电晶体(AR = 0.5),有较佳之通道控制,而三通道场效电晶体之电特性又比单通道场效电晶体好。进而探讨单通道与三通道电晶体组成的6T静态随机存取记忆体(SRAM)电路特性,以及反相器电路的暂态特性,研究发现多通道的缺点在于大电容,电路上的设计需格外小心。就扰动分析而言,随机掺杂造成的表面电位扰动,在鳍式场效电晶体结构,比起三闸极与类平面场效电晶体结构,仍然较均匀,不仅成功压抑元件特性扰动,也成功压抑电路特性扰动。此论文结果对于三通道场效电晶体之DC与电路特性之推估以及下世代电晶体扰动特性分析极有助益。 由于影像显示产业是两兆双星产业发展计画的其中之一,可见此产业的重要性,因此,本研究将继续探讨在表面传导电子发射元件(Surface Conduction Electron-Emitter Display, SED) 用于显示科技技术之工作,我们利用其简单结构与实验数据校正后所得之参数,带入三维有限差分时域粒子式的电磁模拟方法中,成功模拟利用高压氢制作出奈米级钯金属裂缝做为表面传导电子发射的发射源之电子传导特性与发射效率。利用此数值计算技术,目前已知使用高压氢处理,比用聚焦离子束系统制作出的奈米级钯金属裂缝,拥有较好的场发射效率,我们将进一步地探讨奈米级钯金属裂缝,在不同宽度、厚度与倾斜角度变化下,对场发射的影响,并试着在合理结构设定范围内,找到拥有最佳发射效率之几何结构设定。在模拟过程中,除了比较不同几何结构下之场发射特性外,同时也说明其传导机制、发射效率及在阳极版的电流密度分布,此研究对新世代平面显示器技术的突破,有很大的帮助。 总之,本论文以实验验证过的模拟技术完成奈米元件与奈米裂缝的研究。论文的第一部份已经模拟分析了多通道多重闸极场效应电晶体元件与电路遭受随机掺杂扰动影响下的DC、AC、以及动态操作特性。论文的第二部份模拟、分析与设计了奈米级钯金属裂缝,在不同几何结构与参数变化下,奈米裂缝对场发射的影响,并找寻最佳发射效率之几何结构设定。 As the gate length of a metal oxide semiconductor field effect transistor (MOSFET) decreases below 32 nm, vertical channel transistors have attracted much attention because of their many interesting characteristics. Full realization of their characteristics benefits us to continue Moore's Law. Therefore, this study explores the electrical characteristics of 16 nm triple-fin FinFETs with different fin aspect ratios [AR = fin height (Hfin) / fin width (Wfin)]. For device characteristics, the single-fin FinFET (AR = 2) has better channel controllability than the single-fin tri-gate (AR = 1) and single-fin quasi-planar (AR = 0.5) FETs. The performance is improved, as the number of fin increases. Further, the electrical characteristics of six-transistor (6T) static random access memory (SRAM) and transient characteristics of inverter using single-/triple-fin FETs are investigated, respectively. We find that the multi-fin FET has larger capacitance and its circuit implementation should be carefully designed. For fluctuation analysis, the random-dopant-induced surface potential fluctuation in FinFETs is more uniform than that of tri-gate and quasi-planar FETs. The FinFET suppresses not only the fluctuation at the device level, but also at the circuit level. The results of this study provide insight into the DC and circuit characteristics of FinFET structure and benefit the fluctuation analysis for next-generation transistors. As we know, the flat panel display (FPD) is one of promoting policy of "Two Trillion and Twin Star" which plays an important role in Economy of Taiwan. Therefore, based on the previous study of display technology, we keep exploring the field emission of surface conduction electron-emitter display (SED). We get the parameters from the calibration between 3D simulation and measurement data. Then the parameters are input into 3-D finite-difference time-domain particle-in-cell (FDTD-PIC) model to simulate the electron conducting mechanism and emission efficiency of nanoscale Pd think-film strip by hydrogen absorption regarded as the source of surface conduction electron-emitters. Using this model, we find that the field emission of palladium (Pd) thin-film strips by hydrogen absorption has better field emission compared with made by focus ion beam technique. We further explore the effect of field emission under different tilted angle, separation width and thickness of Pd. Within the certain geometry setting, we have first found the optimal configuration of SCEs for better field emission. During the simulation work, the comparisons of field emission, current distribution on anode with different geometry are presented. This study benefits the innovation for new generation flat panel display technology. In summary, the studies of nanodevice and nanogap have been completed by using an experimentally validated simulation program. In the first part, I have already investigated the DC/AC and dynamic characteristic fluctuation induced by random dopant in multi-fin multi-gate MOSFET device and circuit, respectively. In the second part, I have performed the field emission simulation, analysis and design optimization of Pd thin-film strips under different geometry and parameters. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079513639 http://hdl.handle.net/11536/41104 |
显示于类别: | Thesis |