完整後設資料紀錄
DC 欄位語言
dc.contributor.author楊長銘en_US
dc.contributor.authorYang, Chung-Mingen_US
dc.contributor.author葉立明en_US
dc.contributor.authorYeh, Li-Mingen_US
dc.date.accessioned2014-12-12T01:25:16Z-
dc.date.available2014-12-12T01:25:16Z-
dc.date.issued2008en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079522510en_US
dc.identifier.urihttp://hdl.handle.net/11536/41197-
dc.description.abstract應用於本論文的水流問題的數學模型可分為兩部分。一部分就是壓力方程式,另一部分就是saturation方程式。其中saturation方程式又分為transport和diffusion兩部分。在此論文中我們主要著重於解trans- port的部分。在此文中,我們模擬一個長兩百五十六公尺、寬兩百五十六公尺的一個儲油槽。Locally conservative Eulerian-Lagrangian methods (LCELM)是一個有效率的數值方法並且發展來改善在計算transport 方程式中水流質量守恆的部分。從數值模擬的結果,我們可以了解時間變化與流體狀況的關係。zh_TW
dc.description.abstractThe mathematical model of the waterflood problem which is applied in this paper can be divided into two sections. One is the pressure equation and the other is the saturation equation. And the saturation equation also can be pa- rtitioned into the transport stage saturation and the diffusive stage saturation. However, we will pay more attention to solve the transport stage saturation in this research. Here we construct a meters reservoir system for simu- lation. An efficient numerical method, locally conservative Eulerian-Lagrangian methods (LCELM), is developed to compute the transport equation to improve the conservation of waterflood. From the results of the numerical simulations, we can realize the relation between temporal variation and the flow condition.en_US
dc.language.isoen_USen_US
dc.subject不可壓縮zh_TW
dc.subject不相溶zh_TW
dc.subjectincompressibleen_US
dc.subjectimmiscibleen_US
dc.title在多孔介質中兩相不可壓縮不相容的流體的局部質量守恆計算法zh_TW
dc.titleA locally conservative scheme for two-phase incompressible immiscible flows in porous mediaen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 251001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。