Full metadata record
DC FieldValueLanguage
dc.contributor.author謝奇璁en_US
dc.contributor.authorHsieh, Chi-Tsungen_US
dc.contributor.author傅恆霖en_US
dc.contributor.authorFu, Hung-Linen_US
dc.date.accessioned2014-12-12T01:25:18Z-
dc.date.available2014-12-12T01:25:18Z-
dc.date.issued2008en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079522534en_US
dc.identifier.urihttp://hdl.handle.net/11536/41205-
dc.description.abstract在這篇論文裡,我們研究完全路徑雙覆蓋的有向形式。一個圖的有向路徑雙覆蓋是在圖的對稱賦向裡的一個有向路徑集合,其中這個圖的對稱賦向裡的每一個邊都要恰好出現在一個路徑裡,而且對圖裡的每一個點而言都會有唯一一條路徑以此點當作起點以及會有唯一一條路徑以此點當作終點。在這篇論文中,首先我們證明了如果一個圖形沒有包含連通部份為點數3 的完全圖且為3 退化圖則這個圖就存在有向路徑雙覆蓋。再來我們也找出了完全二分圖Kn,n與完全多分圖Km(n)(n為奇數,m≠3,5)的有向路徑雙覆蓋。zh_TW
dc.description.abstractIn this thesis we study an oriented version of perfect path double cover (PPDC). An oriented perfect path double cover (OPPDC) of a graph G is a collection of oriented paths in the symmetric orientation S(G) of G such that each edge of S(G) lies in exactly one of the paths and for each vertex v ∈ V (G) there is a unique path which begins in v (and thus the same holds also for terminal vertices of the paths). First we show that if G has no components which isomorphism to K3 and G is a 3-degenerate graph, then G has an OPPDC. Next we also construct an OPPDC for complete bipartite graph Kn,n and multipartite graph Km(n) (n is odd and m ≠ 3, 5),respectively.en_US
dc.language.isoen_USen_US
dc.subject有向路徑zh_TW
dc.subject對稱賦向zh_TW
dc.subjectdirected pathen_US
dc.subjectsymmetric orientationen_US
dc.title圖的有向路徑覆蓋zh_TW
dc.titleCovering Graphs with Directed Pathsen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 253401.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.