標題: 圖形識別與類神經網路於2006年世界盃足球賽的分類及預測
Pattern Recognition and Neural Networks for Classification and Prediction of 2006 World Cup Football Game
作者: 張文龍
Wen-Lung Chang
林進燈
黃國源
Chin-Teng Lin
Kou-Yuan Huang
電機學院電機與控制學程
關鍵字: 圖形識別;類神經網路;世界盃足球賽;分類;勝率預測;足球;Pattern Recognition;Neural Networks;Classification;Classification;Winning Rate Prediction;Football
公開日期: 2006
摘要: 本論文主要研究的方向有兩個,第一個研究方向為運用圖形識別中的各種非監督式分類法來分析2006年世界盃足球賽的球隊實力分為幾類,分類方法有K-Means分類演算法、Fuzzy C-Means分類演算法、Hierarchical分類演算法、及Self-Organizing Feature Map分類演算法,經由2006年世界盃足球賽官方網站所得到的統計數據,除分析各種非監督式分類法的分類正確率及分類結果之外,同時也針對數據資料作分類個數的有效性驗證。第二個研究方向為運用監督式類神經網路中的多層感知器及倒傳遞學習演算法,並根據2006年世界盃足球賽前一階段的比賽數據來預測下一階段比賽兩隊的勝率,經由實驗結果,本論文建構的勝率預測模型準確率達62.5%,若不含比賽結果平手的場次,則準確率達76.9%。
There are two main research aspects in this thesis. The first research aspect is that we use 4 unsupervised clustering methods to analyze the team level of 2006 FIFA World Cup Football Games. These clustering methods include K-means clustering algorithm, Fuzzy C-means clustering algorithm, hierarchical clustering algorithm, and self-organizing feature map algorithm. Furthermore, we use 3 clustering validity methods to verify whether these football statistical data possesses a clustering property. The second research aspect is that we use the supervised multi-layer perceptron with back propagation learning rule to predict the winning rate based on two team’s previous football game’s records. According to the experimental results, it shows that the correct rate achieves 62.5% by using the adopted prediction model. If the draw games are excluded, the correct rate can achieve 76.9%.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009067537
http://hdl.handle.net/11536/41212
顯示於類別:畢業論文


文件中的檔案:

  1. 753701.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。