标题: 欧几理得空间下空间查询之研究
A Study on Spatial Query Processing in Euclidean Space
作者: 黄振哲
Huang, Chen-Che
黄俊龙
Huang, Jiun-Long
资讯科学与工程研究所
关键字: 空间查询;连续空间查询;最近高密区查询;以位置为基础之服务;空间资料库;spatial queries;continuous spatial queries;nearest dense window queries;location-based services;spatial database
公开日期: 2012
摘要: 近年来,随着具位置感知能力的行动装置越来越普及,以及高速无线网路的覆盖率越来越高,以位置为基础之服务快速地受到使用者的欢迎。空间查询是一种以位置为基础之服务,其特点是根据查询使用者当下位置为基础,来撷取使用者感兴趣之物件。空间查询不但是非常有用的以位置为基础之服务,同时空间查询也广泛应于于资料为基础之行销、决策支援、资源配置等等领域。由于空间查询的高实用性,目前已有许多文献探讨空间查询相关议题。这些文献可约略区分为传统空间查询探索及新空间查询介绍。有鉴于此两范畴的重要性,本论文中我们各针对一范畴提出一个新的方法。

首先,我们针对传统空间查询探索于行动环境中,如何有效支援连续性查询提出一新的以代理伺服器为基础之方法。我们所提出之方法,其目标为有效率地提供有效的最近物件查询与讯框查询之预估有效区域给行动使用者,进而减少行动装置所需传送查询之次数与后端伺服器负担。对最近物件查询部份,我们设计新的演算法使得代理伺服器可立即提供有效预估有效区域给行动使用者。我们所设计的演算法同时也可让代理伺服器即使在快取空间有限时,都能够建立有效的预估有效区域。另一方面,针对讯框查询,我们提出使用新的向量表示法来代表预估有效区域(称为预估讯框向量),来获得较大的预估有效区域。 此外,我们也提出一演算法来迅速计算预估讯框向量。由于最近物件查询与讯框查询特性之不同,我们引进双重索引结构,其中预估有效区域树主要用于最近物件查询处理,而网格则是应用于讯框查询处理。为更进一步提升整体效能,我们发展演算法使得双重索引结构可相互支援。明确来说,网格索引将用以帮助回答最近物件查询及延伸既有预估有效区域;最近物件查询的答案则用以更新网格索引,以利预估讯框向量的计算。实验结果显示,与先前以代理伺服器为基础之方法相比,我们所提出的方法可大幅提高使用者端快取成功比例、减少查询解决时间、以及降低伺服器负担。此外,从实验结果也可以看出,虽然我们所提的方法只有部份的物件资讯,但其效能相当接近代表性以伺服器为基础之方法。

此外,我们提出一新的空间查询,称作最近高密区查询。一个高密区为一区域其长宽与使用者要求相同,并且至少包含使用者要求数目的物件。一最近高密区查询会找出离查询使用者当下位置最近的高密区。我们提出最近高密区查询的动机在于,一个高密区可使得使用者在仅需移动有限距离下,即可体验更多物件,并且更容易找到满意的物件。为解决最近高密区查询,我们介绍并发现一些特性来裨益发现高密区。根据这些特性,我们发展一基础演算法来找出一最近高密区查询之答案。虽然该基础演算法可解决最近高密区查询,我们又提出一高效率演算法来减少计算与I/O存取,进而加速最近高密区的寻找。新的高效率演算法主要包含高密区发现、搜寻区域缩减、与索引节点移除三项技术。高密区发现技术目标为避免计算不相关的物件,以及尽早结束高密区辨识,以求减少计算负担。搜寻区域缩减技术利用已经发现之最佳高密区资讯来减少后续物件处理之计算;索引节点移除技术则是以已发现之最佳高密区资讯来尝试免于存取某些索引节点。实验结果显示我们所提的高效率演算法可有效解决最近高密区查询。
With the proliferation of location-aware mobile devices and the extensive coverage of wireless networks, location-based services (LBSs) have been rapidly gaining in popularity in recent years. Spatial queries, one of LBSs, are to retrieve the data objects of interest according to the locations of query users. In addition to being one useful LBS, spatial queries can be applied to a wide variety of applications such as profile-based marketing, decision support, and resource allocation. Due to a broad spectrum of applications of spatial queries, a significant number of research studies on spatial queries have been proposed and could be broadly classified into two categories, namely traditional spatial query exploration and new spatial query introduction. In this dissertation, we propose two works where one belongs to traditional spatial query exploration and the other new spatial query introduction.

In the first work, we propose a proxy-based approach to continuous spatial queries in mobile environments. The proposed approach aims to efficiently provide effective estimated valid regions (EVRs) of NN and window queries for mobile clients to reduce the numbers of submitted queries as well as the load on the query processing server. For NN queries, we devise novel algorithms to allow the proxy to immediately offer effective EVRs to mobile users. The algorithms also enable the proxy to build effective EVRs even when the proxy cache size is small. On the other hand, for window queries, we propose to represent the EVRs of window queries in the vector form, called estimated window vectors (EWVs), to achieve larger estimated valid regions. Besides, a companion algorithm is presented to create the EWVs in an efficient manner. Due to the distinct characteristics of NN and window queries, we employ different index structures, namely an EVR-tree for NN queries and a grid index for window queries. Moreover, to further increase the effectiveness and efficiency of the proposed approach, we develop algorithms to make the EVR-tree and the grid index mutually support each other. Specifically, the grid index is used to answer NN queries and extend existing EVRs. The answer objects of NN queries are exploited to update the grid index, benefiting the creation of more effective EWVs of window queries. The extensive experimental results demonstrate that the proposed approach significantly outperforms the existing proxy-based approaches in terms of client cache hit ratio, query answering time, and server load. Additionally, the results indicate that the performance of the proposed proxy-based approach is close to that of the representative server-based approach even though the proposed approach has only partial information of data objects.

In the second work, we propose and investigate a novel type of spatial queries,namely nearest dense window (NDW) queries. An NDW query $(q,l,w,k)$, a variant of NN queries, retrieves the nearest dense window of length $l$ and width $w$ containing at least $k$ data objects inside the window with respect to the query location $q$. The rationale of introducing the NDW query is that a region with a number of data objects is able to allow a query user to explore more objects and to be more likely to find satisfactory objects at a low moving cost. To answer NDW queries, we introduce and identify several properties to facilitate the identification of dense windows. Based on the properties, we develop a baseline algorithm to find the nearest dense window of an NDW query. Although the baseline algorithm can be used to answer NDW queries, we propose an NDW algorithm with less computation and I/O access to further increase the efficiency of NDW query search. The NDW algorithm mainly consists of three techniques, namely dense window discovery, search region reduction, and index node pruning. The dense window discovery technique attempts to avoid evaluating irreverent objects and to terminate the discovery as early as possible. The search region reduction and index node pruning techniques take advantage of the best distance found so far to reduce the search cost of objects and index nodes, respectively. The experimental results show that the proposed NDW algorithm is efficient in terms of I/O cost and query cost.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079555860
http://hdl.handle.net/11536/41432
显示于类别:Thesis