标题: 利用深度资讯对复杂场景中的三维物体进行切割与辨识
3D object segmentation and recognition in cluttered scene base on rang data
作者: 徐煜维
Hsu, Yu-Wei
林升甫
Lin, Sheng-Fuu
电控工程研究所
关键字: 三维物体辨识;深度资讯;深度影像切割;边缘图像;区域特征;多维度直方图;3D object recognition;range data;range image segmentation;edge map;local feature;multidimensional histogram
公开日期: 2008
摘要: 本论文提出一个快速且有效的三维物体辨识系统,以辨识复杂场景下的三维物体。此系统可解决深度资讯(range data)中,因为测量误差所产生的杂讯,同时提高物体被遮蔽时的辨识率,未来可将此系统应用在机器人视觉上,来进行辨识与引导动作。
首先,本论文结合了适应性中值滤波器(adaptive median filter)与移动式最小平方法(moving least square)来修复因测量误差产生的三维杂讯,以获得正确的物体部分表面,并且提出了一个多重临界值演算法(multilevel thresholding),使得复杂场景变成多个单一场景,再利用深度影像中像素的连通性,来分离每个单一场景中的物体,以作为辨识之输入。
其次,为了使得目标物体在遮蔽环境下,也可以有效地被辨识出来,本论文使用了边缘图像(edge map)的概念,使单一物体依照其表面变化,被分割成许多不同的封闭区块,以提高目标物体被遮蔽时的辨识率。首先,利用Canny 边缘侦测器(Canny edge detector)来侦测出深度影像中物体的步阶边缘,然后本论文提出了计算物体表面法向量变化以形成梯度影像,再侦测出物体的屋脊边缘(roof edge),就形成了边缘影像(edge image),最后对边缘影像使用形态学运算(morphological operator),使边缘影像变成边缘图像。
然后,对每个物体的边缘图像中的每个封闭区块使用区域成长法(region growing)来抽取出该区块的特征后,并使用多维直方图(multidimensional histogram)统计整体特征与区块特征,形成了整体直方图(unity histogram)与部分直方图(partial histogram);其中,在本论文中,使用曲率之形状指标(shape index)及法向量分量之夹角,这两个区域特征来表示三维物体部分表面之特征。
最后使用 -divergence计算直方图相异程度,并且结合了几个常用的直方图比对方法,以计算部分直方图的相异程度,同时提出了两阶段的辨识系统来缩短辨识所需的时间。
In this thesis, a highly efficient 3D view-based object recognition system, which is to recognize 3D objects in cluttered scenes, is proposed. This system can handle the 3D noise in the range data because of measure error margin in the range finder, and increase the recognition accuracy when object is covered in cluttered scene. In the future, I hope that this recognition system will apply to the robotic vision.
First of all, in order to handle the 3D noise in the range data, an algorithm which combines adaptive median filter and moving least square (MLS) is proposed in the beginning of the recognition system. After that, a multilevel thresholding method is proposed which segments a cluttered scene into several monotonous scenes, and then separates each object in the scene by using the 8-connected component of pixels in range image. These objects will be the input of the recognition system.
More importantly, in order to recognize objects which are covered in cluttered scene, a concept of edge map is applied in this thesis. Then, extract the feature belongs to each closed region in the edge map by using region growing method, and calculate the features to create unity histogram and partial histogram by using multidimensional histogram; moreover, the local feature is presented as features of 3D object’s surface; however, in order to increase the speed during the recognition, a two-step recognition system is presented in this thesis.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079612513
http://hdl.handle.net/11536/41831
显示于类别:Thesis


文件中的档案:

  1. 251301.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.