标题: | 自动影像分割技术及其于人体侦测与深度估测之应用 Automatic Image Segmentation and its Applications to Human Detection and Depth Estimation |
作者: | 曾筱君 Tseng, Hsiao-Chun 张志永 Chang, Jyh-Yeong 电控工程研究所 |
关键字: | 种子区域成长;影像分割;人脸侦测;深度估测;人体侦测;seeded region growing(SRG);image segmentation;face detection;depth estimation;body detection |
公开日期: | 2008 |
摘要: | 影像分割技术在医学影像处理、交通流量监测、人体侦测和多媒体等方面的应用中占有主要的地位。深度估测也是多媒体与服务机器人应用的一个重要的课题之一。在无法事先取得任何背景资讯的情况下,从各种不同的场景中将人体或其他感兴趣的物体抽取出来当成前景,且从单张影像所获得的资讯估测人体,或者物体的深度将是一件非常具有挑战性的工作。为了解决这个问题,我们结合了影像中特征、轮廓和空间分布等资讯来判别不同的分割区域是否代表着同一个物体,并将判别为同一个物体的不同区域做合并。接着我们使用了两种不同的深度估测方法对已经从场景中被截取出来的人体作深度的估测。这两种深度估测方法分别是以消失线及消失点为基础的估测方式,和以固定相机之查表法的估测方式来重建二维平面影像的三维景深资讯。 在此篇论文中,我们结合了影像分割和人脸侦测技术,希望能在不同场景中将人体抽取出来。首先,我们利用了肤色资讯与椭圆样板比对找出人脸在影像中的位置,接着我们提出了一套改良式自动种子区域成长演算法来分割影像。在我们提出的分割演算法中,初始种子将会自动产生,且剩余未分类的像素将会归到其最接近的区域。在影像初始分割完成后,任两个相邻的区域如果具有高相似性将被合并。再根据人体的形态找出人体的范围,将分割结果属于人脸与人体的区域作合并,完成前景人物侦测,并确定人体的位置。最后,我们将侦测人体位置的垂直y座标值,并对其做深度估测。假如影像中的消失线或消失点可以被侦测,我们可采用cross-ratio的关系式来估测深度。另一方面,我们藉着建立相机深度查表法,我们可采用查表法来估测其深度。 Image segmentation plays an essential role in applications such as medicine image processing, traffic flow magnitude monitored, human detection, multimedia applications, and many others. Depth estimation is one of the important topics in multimedia and service robot applications. It is a very challenging task to extract human or other objects of interested from scenes without any background information, and then to estimate the human depths from single camera view. To solve this, we adopt the method which combines the feature-based, shape, and space information of an image to recognize different segmented regions. Then we estimate the human depth based on vanishing line and point, or based on camera’s depth look-up table. In the thesis, we combine image segmentation techniques and face detection methods to extract the human from scenes. Firstly, skin regions are detected and an ellipse fitting method is employed to detect the face region and consequently locate the human position. Then we propose an improved automatic seeded region growing algorithm to segment the image. The initial seeds are generated automatically, and the remaining pixels are classified to the nearest region. After the region growing procedure, two neighboring regions with high similarity are merged. The human body is determined by confining semantic human body region in segmented regions, and those belonging to the human face and human body are merged afterward. The human is extracted and the human position is also decided. Lastly, we will detect the human vertical y-coordinate values in the image, and the depths can then be estimated according to the cross-ratio formula or the depth look-up tables of the camera. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079612610 http://hdl.handle.net/11536/41928 |
显示于类别: | Thesis |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.