Full metadata record
DC FieldValueLanguage
dc.contributor.author黃瑞毅en_US
dc.contributor.authorHuang, Jui-Yien_US
dc.contributor.author李榮耀en_US
dc.contributor.authorLee, Jong-Eaoen_US
dc.date.accessioned2014-12-12T01:30:19Z-
dc.date.available2014-12-12T01:30:19Z-
dc.date.issued2008en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079622517en_US
dc.identifier.urihttp://hdl.handle.net/11536/42503-
dc.description.abstract本文的目標是探討一些常用於解決線性橢圓偏微分方程的古典方法及應用。首先,我們給一個有關於在靜電勢中Laplace方程的實際例子並利用有限元素法解之。再來介紹常用的古典解題技巧,像是在不同定義域中分離變數法的使用以及有限與無限空間的傅立葉轉換。最後我們介紹數值方法中的有限差分法並藉助軟體Mathematica去計算一個擁有Dirichlet 邊界條件的Laplace方程問題 。zh_TW
dc.description.abstractThe aim of this paper is to investigate several classical methods and applications of the linear elliptic partial differential equations. First, a practical example is given based on the Laplace’s equation for the electrostatic potential, and is solved by Finite element method. Secondly, classical solving techniques are introduced, such as separation of variables in different domains, and Fourier transforms in both finite and infinite domains. At last, numerical Finite difference method is introduced to solve the Laplace’s equation on a square with nonhomogeneous Dirichlet boundary condition, which is computed by Mathematica.en_US
dc.language.isoen_USen_US
dc.subject偏微分方程zh_TW
dc.subject橢圓zh_TW
dc.subject球狀座標zh_TW
dc.subject圓柱座標zh_TW
dc.subjectpartial differential equationen_US
dc.subjectellipticen_US
dc.subjectspherical coordinatesen_US
dc.subjectcylindrical coordinatesen_US
dc.title線性橢圓偏微分方程之研究zh_TW
dc.titleTopics on Linear Elliptic Partial Differential Equationsen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 251701.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.