标题: 雷射溅镀法成长单晶非极性氧化锌薄膜在蓝宝石基板之光学与晶体结构相关特性研究
The correlation between optical and structural properties of nonpolar ZnO epitaxial films on sapphires grown by pulsed laser deposition
作者: 郭晋嘉
Kuo, Chin-Chia
谢文峰
Hsieh, Wen-Feng
光电工程学系
关键字: 非极性;氧化锌;光学;磊晶;nonpolar;ZnO;epilayer;optical
公开日期: 2012
摘要: 我们利用准分子雷射溅镀的方法分别成长非极性的氧化锌 与 的磊晶薄膜在 与 的蓝宝石基板上,而这些磊晶面的关系分别如下所示: 与 。 非极性 氧化锌的磊晶薄膜成长在 面的蓝宝石基板上,会受到非等向性的应力作用造成晶格扭曲进而改变晶体的对称性:由本来纤锌矿C6V的对称性变成一个斜方晶系C2V的对称性。 从X光绕射分析可得知此非极性 氧化锌的c轴是受到一个压缩的应力,而另两个方向都是拉伸的应力(y轴延表面方向,x轴是与c轴方向垂直且在in-plane上)。 当x与y轴的应力大小差距超过了0.6%,这样非等向性应力大小足够让晶体结构从原本的纤锌矿C6V的对称性变成一个斜方晶系C2V的对称性。利用不同偏极化的拉曼光谱、光学反射与萤光光谱,我们都可以观察到晶体对称性由纤锌矿C6V改变到斜方晶系C2V的结果。 拉曼光谱上特定的振动模态并不满足C6V的特性却恰恰符合C2V对称性下的振动模态;而光学反射与萤光光谱发现特别的跃迁能阶E1与 E2,这个有别于纤锌矿氧化锌的跃迁是由于晶体结构因为非等向性应力作用而变形成斜方晶系C2V所造成的。
而成长在 蓝宝石基板的 氧化锌利用了额外的晶相 ,来降低应力对其磊晶薄膜造成的影响。 这些杂相 的a轴与主结构 氧化锌的a轴是完全重叠在一起,像两个原本 氧化锌的晶体对应其 a轴往两侧各自旋转约59°并沿着 氧化锌的c轴排列;因此我们可以得这些不同晶相之间的磊晶面关系: 。 此外我们也发现这些杂相的多寡与萤光光谱上的宽频谱有关,这个跃迁能量大约在3.17电子伏特。 这个跃迁是由于不同晶相间的界面杂质或者是缺陷束缚激子所造成的,我们把它称作是表面束缚激子。 当杂相的数量增加的同时也增加的界面的数量,进而产生出更多的表面束缚激子在这些边界上。
为了解决杂相带来的表面束缚激子发光,我们利用两阶段成长的方式来消除这些杂相的产生。当低温成长缓冲层厚度在47到67奈米之间,这些缓冲层能够分摊足够的应力而让再成长于高温下的氧化锌会是单纯的 晶面,但是如果低温缓冲层的厚度超过或者是不足都会有杂相的产生。 利用两阶段成长所长出来的 氧化锌只要在低温时没有观察到杂相的出现都能有很好的表面平整度,我们也发现杂相的数量增加会增加薄膜的表面粗糙度,所以表面粗糙度也可以用来初步判断是否有杂相的形成。 低温光学频谱下我们发现了除了一般氧化锌的发光特性外还有一个很强的基面堆叠缺陷发光,这是由于在两阶段成长的 氧化锌有较多的基面堆叠缺陷,而大量的基面堆叠缺陷分散了应力造成的影响并降低氧化锌的应力作用。 所以两阶段成长确实能消除表面束缚激子发光与杂相的形成,并且能有效的降低应力对磊晶薄膜的影响也有较好的表面平整度。 我们也制作了非极性的量子结构,并证实不会有量子史塔克效应产生,光学特性主要都是受量子效应影响;这样的结构也证实是比极性结构更适合应用在光学元件上。
The nonpolar - and -oriented ZnO films have been epitaxially grown by pulsed laser deposition (PLD) on the sapphire and substrates. The epitaxial relationship of nonpolar a- and m-plane ZnO on r- and m-sapphires are and , respectively.
Crystal symmetry breaking of wurtzite C6V to orthorhombic C2V due to in-plane anisotropic strain was investigated for nonpolar ZnO epi-films grown on the r-sapphire. X-ray diffraction (XRD) results reveal the epi-layer is subjected to a compressive strain along the polar c-axis and tensile strain along both y- surface normal and in-plane x- axis. The strain difference between y- and x-axes is larger than 0.6% that introduces enough anisotropic strain to break the crystal symmetry from wurtzite C6V to orthorhombic C2V. The polarized Raman spectra of modes reveal violation of the C6V selection rules; oppositely, the C2V configuration satisfies the selection rules for the Raman modes. The observed E1 and E2 bands in polarized optical reflection and photoluminescence (PL) spectra, which are different from the typical ZnO for wurtzite structure, confirm the anisotropic strain causes the structure change to the orthorhombic one.
In the m-plane ZnO films grown on m-sapphire, small amount of domains were found providing strain relaxation of the m-ZnO matrix. And the a-axes of both the domains and the m-ZnO matrix are aligned with the c-axis of the m-Al2O3 substrate. The c-axis of the domains rotates about □59° against the common a-axis of the m-ZnO. From this result, we found the epitaxial relationship of . Through carefully correlating low-temperature polarized PL spectra with the XRD peak intensity ratio of of the samples grown at different temperature and after thermal treatment, we found that the broad-band emission around 3.17 eV may result from the interface defects trapped excitons at the boundaries between the domains and the m-ZnO matrix. The more domains in the m-ZnO layer cause the more surface boundary that makes the stronger surface-bound-exciton emission.
To eliminate the extra domain, we used the low-temperature (LT) grown buffer of m-ZnO to investigate the optical and crystalline properties. Examined by XRD, we found when the thickness of LT-buffer layer is below 67 nm it contain no any extra domains, however, there exist a lot of extra domains for the thickness above 156 nm. The amount of extra domains increases with decreasing the buffer thickness. The optimal thickness of LT-buffer is from 47 to 67 nm, in which no observable extra -domains present in the two-step m-ZnO epilayers. The AFM measurement also shows the lower surface roughness for the two-step growth m-ZnO than those without buffers grown at the same temperature. This characteristics benefit for fabricating quantum-well (QW) structures. The LT-PL spectra show the three emission peaks around 3.364, 3.328 and 3.263 eV, which are attributed to the emissions of donor-bound excitons, basal plane stacking faults (BSFs) and free electron bound to acceptor emissions, respectively. The BSFs emission due to high BSFs density of ~2x106 cm-1 by TEM measurement, this value is larger than the m-ZnO without LT-buffer. The high BSFs density should provide the way to relax the lattice strain. In addition, the LT-PL spectra indicate absence of the broad-band emission at 3.17 eV result from the domain boundary trapping between the m-ZnO and extra domains which is dominant in the m-ZnO without LT-buffer.
Finally, 5 pairs of nonpolar m-plane ZnO/MgxZn1-xO quantum well structures were successfully grown on m-sapphire with LT m-ZnO LT-buffer. The results demonstrate these QW structures possess quantum confinement without experiencing the quantum confined Stark effect due to their nonpolar nature.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079624811
http://hdl.handle.net/11536/42578
显示于类别:Thesis


文件中的档案:

  1. 481101.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.