完整後設資料紀錄
DC 欄位語言
dc.contributor.author游雅芳en_US
dc.contributor.authorYou, Ya-Fangen_US
dc.contributor.author陳鄰安en_US
dc.contributor.authorChen, Lin-Anen_US
dc.date.accessioned2014-12-12T01:30:55Z-
dc.date.available2014-12-12T01:30:55Z-
dc.date.issued2008en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079626514en_US
dc.identifier.urihttp://hdl.handle.net/11536/42674-
dc.description.abstract離群平均用於檢定整個分配的偏移時有不錯的檢定力,然而部分分配偏移時放大了離群平均值的變異數,導致檢定力大幅下降,而這部分分配偏移的情況在癌症的研究上頻繁可見。傳統的統計方法使用好的資料來做統計推論,而離群平均是利用離群值做統計推論,二者在觀念上有很大的不同。我們從兩個觀點來思考無母數離群平均值的研究,首先推導離群平均之漸進分配,建立 水準檢定與計算 值,接著針對離群值的判定原則,推論檢定力和漸進變異數之間的關係。zh_TW
dc.description.abstractThe outlier mean has a reasonable power when the distribution is in a location shift, however, its power is remarkably reduced when he distribution is shifted on only a small fraction of observations, due to large asymptotic variances, while this happen frequently in the cancer study. We consider the study of the nonparametric outlier mean (outlier sum) in two aspects. First, the development of asymptotic distribution for establishing a level test or computing value is established. Second, concept of using outliers for statistical inferences may be treated differently from the classical statistical inferences that construct rules based on good data. We study the relation between powers and asymptotic variances of outliers means aiming at drawing principles for choosing outliers - based inference techniques.en_US
dc.language.isoen_USen_US
dc.subject離群平均zh_TW
dc.subject基因分析zh_TW
dc.subjectOutlier Meanen_US
dc.subjectGene Expression Analysisen_US
dc.title無母數離群平均之基因分析zh_TW
dc.titleNonparametric Outlier Mean for Gene Expression Analysisen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 651401.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。