标题: | 射频CMOS主动电感器的研究与应用 The Study of Radio Frequency CMOS Active Inductors and Applications |
作者: | 杨镇泽 Yang Jenn Tzer 李镇宜 Lee Chen Yi 电子研究所 |
关键字: | CMOS;主动式电感器;射频放大器;宽频放大器;LC 振荡器;CMOS;Active inductor;RF amplifier;Wideband amplifier;LC oscillator |
公开日期: | 2005 |
摘要: | 在本论文中,我们首先针对各种不同的CMOS主动式电感器(Active Inductor)与负电导产生器(Negative Conductance Generator)的组合应用于不同工作频率的射频放大器设计研究,并且对各种不同的主动式电感器使用不同的损失补偿技术来改进此电感器特性的设计。接着将此改进的主动式电感器应用于宽频放大器(Wideband Amplifier)与电压控制震荡器(Voltage-Controlled Oscillator)电路,以证实射频电路中使用主动电感器能得到比使用平面螺旋型电感器(Planar Spiral Inductor)有更好的优点。如,可得到很高的品质因数(Quality Factor)、高的电感量(Inductance)等特性;并且使用主动式电感器的射频电路于晶片制作时的面积将比使用平面螺旋型电感器的射频电路所占的晶片面积小很多的优点。 本论文首先描述使用平面式螺线型电感器元件应用于射频放大器设计,虽能得到良好的特性结果,但仍有些缺点产生。如,平面式螺线型电感器占用的晶片面积太大、品质因数很低、不容易准确控制电感的特性等缺点。而这些缺点可以使用主动式的电感器来给予改善。应用目前已经存的主动电式感器结合改进电感器特性的负电导产生器技术设计工作于不同频带的射频放大器。经由模拟结果得到输出的增益可达到17dB以上、杂讯指数低于6dB,此结果与使用平面式螺线型电感器相近,而面积为使用平面式螺线型电感器的四分之一及使用主动电感器的功率消耗也有明显的降低。所以,得知使用主动式电感器将优于使用平面式螺线型电感器。 然而,为降低改善主动电感器特性的电路复杂度,提出各种不同的简单补偿电路对各种不同的电感器作改良设计,得到高效能的主动电感器,且能得到电路非常简单的电感器。经由数学的分析、电路的模拟及实际的测量结果,此改良后的电感器可得到很高的品质因数(约104以上)。最后,将此改良后的主动式电感器应用于宽频放大器及电压控制振荡器的电路中。于宽频放大器可以得到频带宽度由0Hz到1GHz有平坦的增益(约18dB)特性。对于电压控制振荡器得到宽的调整范围(1GHz到3GHz)、-98dBc/Hz的相位杂讯及10mW的固定功率消耗。因此,经由以上的研究结果证实使用主动电感器于射频电路为一种可行的方法,此种方法可使设计射频电路时可以大幅的降低所占的晶片面积的成本。 In this thesis, we will focus on the research illustration and design comparison on combing several different CMOS active inductor with negative conductance generator (NCG) applied in RF amplifier on different operating frequency. And we will apply various loss compensation techniques on several different active inductors to improve the characteristics of the inductors. Furthermore, we applied the improved active inductor on the wideband amplifier and the voltage-controlled oscillator to prove that using the active inductors in RF can have more advantages than using the planar spiral inductor. For example, the active inductor can have a higher quality factor, a higher operating frequency, and a higher inductance etc. On the other hand, in radio frequency circuit design, the size of the chip used in an active inductor will be much smaller than the one used in a planar spiral inductor. The design of the use of the planar spiral inductor applied on the radiofrequency amplifier will be described at the beginning of the thesis. Though the above design shows the result of performing good characteristics, some disadvantages of this design also exist. For example, the size of the chip of the circuits using planar spiral inductor too large, quality factor is too low, and the characteristics of the inductor cannot be controlled easily and accurately. We presented the use of the active inductor to improve the disadvantages mentioned above. We applied the techniques of the negative conductance generator, which combines the existing active inductor and the characteristics of the improved inductor, to work on the different bandwidth radio frequency. From the simulation results, we found that the output power gain is over 17dB, and the noise figure is lower than 6dB. The simulation also shows that the results are very close to those using the planar spiral inductor, and the size of circuit using the active inductor design is one forth of that using planar spiral inductor. Moreover, the power consumption decreases dramatically when using active inductor. So, we can conclude that using active inductor generates more benefits than using planar spiral inductor. For minimizing the complexity of the active inductor circuits, we present several simple compensated circuits for each different active inductor to reach the goals of performing higher performance and an easy design circuit. From the mathematical analysis, simulated results, and measured results, the improved active inductor can obtain a very high quality factor, which is above 104. Finally, we present the results of applying the improved active inductor in the circuits of wideband amplifier and voltage-controlled oscillator. From the wideband amplifier’s point of view, the amplifier can generate a flat gain, which is about 18dB, in the bandwidth from 0Hz to 1GHz. From the voltage-controlled oscillator’s point of view, the voltage-controlled oscillator can generate a wide tuning range from 1GHz to 3GHz, -98dBc/Hz phase noise and steady 10mW power consumption. As the result, we can conclude that using active inductor in the radio frequency is a workable solution via the approach mention above. This solution also saves us a lot of cost taken by the size of the chip during the design stage of the radio frequency. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT008711844 http://hdl.handle.net/11536/42779 |
显示于类别: | Thesis |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.