Full metadata record
DC FieldValueLanguage
dc.contributor.author張元碩en_US
dc.contributor.authorChang, Yuan-Shuoen_US
dc.contributor.author彭德保en_US
dc.contributor.authorPerng, Der-Baauen_US
dc.date.accessioned2014-12-12T01:31:38Z-
dc.date.available2014-12-12T01:31:38Z-
dc.date.issued2008en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079633506en_US
dc.identifier.urihttp://hdl.handle.net/11536/42859-
dc.description.abstract  半導體製造業對產品品質的要求相當嚴謹,因此在晶粒(Die)封裝前的晶粒缺陷檢測是一個品管很重要的過程,傳統的晶粒表面缺陷檢測通常是目視檢測,此方式需要花費大量的人力使用肉眼判斷,不同檢測人員對缺陷的判斷可能不一致,且容易因視覺疲勞產生錯誤判斷或是判斷標準不一致的情形發生。   本論文擬針對晶粒表面需要檢驗的缺陷部分,包括:(1)微粒或污染、(2)面積缺損、(3)變色與(4)護層不良等,利用機器視覺技術,提出了一個自動化的檢測演算法。   本論文之研究目的在於發展一套以自動視覺檢測系統為基礎的晶粒表面缺陷檢測系統,能檢測出晶粒表面中具有缺陷的晶粒。以提升檢測效率、減少成本,並達成可進行全檢的三項目標。zh_TW
dc.description.abstractProduct quality is an important factor in semiconductor manufacturing. Therefore, die defect inspection is an important quality control process before packaging. Conventionally, the inspection of die surface defects by human observation is labor intensive. It results in low efficiency and inaccuracy. This research is to design and develop an automated visual inspection system for die surface defects by using the machine vision technology. The mainly focused inspection items of dice are particles, contaminations, pad missing, pad damage, discoloration, and passivation. A prototype of the automated visual inspection system for die surface defect inspection will be implemented for inspection efficiency, cost down, and full-inspection.en_US
dc.language.isozh_TWen_US
dc.subject機器視覺zh_TW
dc.subject影像處理zh_TW
dc.subject晶粒檢測zh_TW
dc.subject缺陷檢測zh_TW
dc.subjectMachine Visionen_US
dc.subjectImage Processingen_US
dc.subjectDie Inspectionen_US
dc.subjectDefects Inspectionen_US
dc.title晶粒表面缺陷自動視覺檢測系統之設計與開發zh_TW
dc.titleDesign and Development of an Automated Visual Inspection System for Die Surface Defectsen_US
dc.typeThesisen_US
dc.contributor.department工業工程與管理學系zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 350601.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.