标题: 一个以行动网路讯号分析为基础之交通速度估计机制
A Traffic Speed Estimation Mechanism Based on the Signals of Cellular Networks
作者: 林邦晔
Lin, Bon-Yeh
罗济群
Lo, Chi-Chun
资讯管理研究所
关键字: 智慧型运输系统;交通资讯;定位演算法;大资料量运算;ITS;Traffic Information;positioning algorithm;Massive data processing
公开日期: 2011
摘要: 近年来随着经济的快速发展,传统的交通系统面临了许多严峻的挑战。为了解决日益严重的交通问题,许多国家寄望能够透过资讯与通讯科技的协助,让交通资源能够更有效的运用。这正是智慧型运输系统(Intelligent Transportation System, ITS) 发展的目的。然而ITS成功的关键在于获得正确且即时的交通资讯,以利后续的决策分析与运用。近年来,利用追踪手机位置来搜集交通资讯的机制越来越受到注意,这个机制不需要花费庞大的金额来架设及维护额外的侦测装置,由于几乎每个人都有手机,因此以追踪手机位置所得到的交通资讯是非常全面的。本研究提出一个以行动网路讯号分析为基础之交通速度估计机制,透过分析通讯中手机所回传的讯号测量报告,以指纹辨识定位演算法(Fingerprint Positioning Algorithm, FPA)来进行手机的匿名定位与测速。在实验中以快速道路66号路段进行实际路测,其指纹辨识定位演算法位置估计的平均误差可达36.11公尺,车速评估的平均误差可达3.39%,提供较第三代合作夥伴计划(3rd Generation Partnership Project, 3GPP)于标准中所定义之Cell ID定位方法更为准确的位置和车速估计。此外,本研究采用MapReduce架构进行平行处理,可有效改善指纹辨识定位演算法需要大量运算的限制,以提供即时且可靠的交通资讯,予以用路人参考。
In recent years, fast economic growth and rapid technology advance have led to significant impact of the quality of traditional transport system. Intelligent Transportation System (ITS), which aims to improve the transport system, has therefore become more and more popular. In order for an ITS to be viable, it is essential to establish and promote effective real-time traffic information systems. Compared to other traditional traffic information collecting methods, the traffic information estimations from cellular network data are more immediately, cost-effective, and easy to deploy and maintain. In this paper, we propose a novel speed estimation method based on the signals of cellular network. We analyze the measurement reports sent by active phone in the cellular networks and adopt the k-nearest-neighbors based fingerprint positioning algorithm (kNN-based FPA) to obtain the location and speed information of cell phones. In the experiments, we compare the estimated positioning information and speed information with the real information obtained from Global Position System (GPS) receiver. The results show that the average error of location determination by using FPA is 36.11 meters. For speed estimation, the average error ratio by using FPA is 3.39%. Finally, we adopt the MapReduce algorithm and a modified columnar data model to accelerate the processing of FPA. The result shows this approach will be feasible to estimate the overall speed information for ITS improvement.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079634802
http://hdl.handle.net/11536/42956
显示于类别:Thesis