完整后设资料纪录
DC 栏位语言
dc.contributor.author卢俊錡en_US
dc.contributor.author李嘉晃en_US
dc.contributor.authorLee, Chia-Hoangen_US
dc.date.accessioned2014-12-12T01:34:44Z-
dc.date.available2014-12-12T01:34:44Z-
dc.date.issued2008en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079657548en_US
dc.identifier.urihttp://hdl.handle.net/11536/43554-
dc.description.abstract随着网际网路的蓬勃发展,部落格与讨论版的兴起,越来越多人在网路上发表自己对事物的意见以及看法。也因此,当购物者对某件商品下决策时,大部分人们在网路上对该产品的评价往往是很重要的参考依据。例如,一个网路的使用者在选择要看甚么电影之前,通常会先浏览热门电影讨论版参考看过该电影的使用者的评价来做为决定的因素。但对大部分使用者而言,要消化掉网路上大量对产品的评价资讯可能是相当耗时的。因此,在本篇论文中,我们透过自然语言处理以及资料探勘中的分群技术,来分析影评对该电影的评价是‘好看’或‘不好看’,并利用自动摘要技巧把影评中‘好看’或‘不好看’的句子撷取出来回馈给使用者。希望使用者透过我们的介面,可以在比较参考大量的评论资讯时,可以用更简单,清楚,直觉的比较并做出决定。zh_TW
dc.description.abstractWith the rapid development of Internet and rise of BLOG and Discussion board , there are more and more people express their views or opinion on things on the internet . Thus , most of people’s appraisals on the web are significant information for customer making their decision . For example , people could Decided to go to the movies according to the existing appraisals on the web . But for most of user it is Time consumption to read all reviews on the movie Discussion board . In this Paper , we apply the Natural Language Processing (NLP) technology and classification technology to classify Text with two polarity : good or bad . Then we combine auto summarization technology to generalized a corresponding appraisal . We hope the user can make decision more rapid through the system which is designed by us .en_US
dc.language.isozh_TWen_US
dc.subject情感分类zh_TW
dc.subject情感探勘zh_TW
dc.subject自动摘要zh_TW
dc.subjectauto summarizationen_US
dc.subjectSentiment Classificationen_US
dc.title影评意见探勘及摘要之问答系统zh_TW
dc.titleQuestion Answering - Opinion mining And Auto summarization for Movie Reviewen_US
dc.typeThesisen_US
dc.contributor.department资讯科学与工程研究所zh_TW
显示于类别:Thesis


文件中的档案:

  1. 754801.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.