Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 李宗翰 | en_US |
dc.contributor.author | Lee, Tsung-Han | en_US |
dc.contributor.author | 荊鳳德 | en_US |
dc.contributor.author | Chin, Albert | en_US |
dc.date.accessioned | 2015-11-26T01:05:27Z | - |
dc.date.available | 2015-11-26T01:05:27Z | - |
dc.date.issued | 2010 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT079711574 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/44276 | - |
dc.description.abstract | 近年來,在半導體產業中,記憶體元件的發展已成為另一主流。其中,屬於非揮發性型態的快閃式記憶體因其具有高密度特性、良好的資料保存能力和重複抹寫功能而被廣泛的使用在個人行動電子產品,例如手機或數位相機。隨著這些電子產品的普及化,對快閃式記憶體的需求也快速增加。因此,快閃式記憶體的發展和技術已成為重要的研究之一。 隨著元件尺寸持續縮微,快閃式記憶體主要的製程技術關鍵為其具有導電性的多晶矽浮停閘。基於非揮發性記憶體基本的需求,以多晶矽材料當作電荷儲存層的快閃式記憶體需要厚度至少約 6–7奈米的穿遂氧化層來防止儲存電荷遺以增加資料儲存能力。其主要原因為反覆的編碼和抹除過程將會對穿遂氧化層造成應力而產生缺陷,這些缺陷可能形成漏電路徑而導致多晶矽全面性的漏電。然而,較厚的穿遂氧化層不僅需要較大的操作電壓也增加元件製程縮微的困難度。為了解決此問題,多晶矽材料將被氮化矽所取代。由氮化矽電荷儲存層所形成的多晶矽或金屬閘極-氧化矽-氮化矽-氧化矽-矽結構記憶體元件可以解決平面微縮的問題且同時具有良好電荷儲存能力、低工作電壓特性和符合目前互補式金氧半場效電晶體元件的製程,因此已開始受到大家的關注。 在此論文中,我們使用全新的高介電係數介電質材料氧化鉿(介電係數約25)和氧化鋯(介電係數約35)形成交錯層取代傳統的氮化矽電荷捕獲層。高介電係數介電質的使用,不僅可以有效降低操作電壓,同時也可以將電壓有效的跨在薄二氧化矽穿遂層以增加編碼和抹寫速度。此外,應用具高功函數的金屬閘極氮化鉬替代傳統多晶矽閘極可以防止在抹除狀態時電荷從閘極端注入並增加抹除效率。 | zh_TW |
dc.description.abstract | Recently, the Flash memory is commonly used in portable electronic products, such as cell phone, MP3 player and USB Flash. However, with the increase in requirements for products, the technology and process must be still improved. The key issue for poly-Si floating gate non-volatile memory is the electrically conductive charge storage layer, where the programmed electrons will leak out through the single oxide defect. Such oxide defects are generated by the program and erase stress operation. In order to maintain the data retention, the thick tunnel oxide (6-7 nm) is required. That is opposite to the VLSI scaling trend. In addition, the memory device with thick tunnel oxide requires a higher operation voltage. To overcome this problem, the conductive poly-Si is replaced by discrete trapping nitride to form the [poly-Si or metal gate]-SiO2-Si3N4-SiO2-Si SONOS or MONOS memory. The isolated charges stored in discrete traps can prevent complete charge leakage. Therefore, a thinner tunnel oxide can be used. This in turn yields lower voltage and faster speed for program and erase. In this dissertation, we demonstrated a low voltage, fast speed and good data retention MONOS memory device with high work function MoN metal gate, novel interactive high-k□HfO2-ZrO2 structure for trapping layer substituted conventional Si3N4 trapping layer. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 高介電係數 | zh_TW |
dc.subject | 金屬閘極 | zh_TW |
dc.subject | 金屬-氧化層-氮化層-氧化層-矽 | zh_TW |
dc.subject | 非揮發性記憶體 | zh_TW |
dc.subject | high-k | en_US |
dc.subject | metal-gate | en_US |
dc.subject | MONOS | en_US |
dc.subject | Non-Volatile memory | en_US |
dc.title | 具有低電壓之金屬-氧化層-氮化層-氧化層-矽結構非揮發性記憶體之製程技術應用與研究 | zh_TW |
dc.title | Process and Technology For Low Voltage MONOS Non-Volatile Memory | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 電子研究所 | zh_TW |
Appears in Collections: | Thesis |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.