完整後設資料紀錄
DC 欄位語言
dc.contributor.author梁瑋哲en_US
dc.contributor.authorLiang, Wei-Tseen_US
dc.contributor.author陳永平en_US
dc.contributor.authorCheng, Yon-Pingen_US
dc.date.accessioned2014-12-12T01:38:07Z-
dc.date.available2014-12-12T01:38:07Z-
dc.date.issued2009en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079712599en_US
dc.identifier.urihttp://hdl.handle.net/11536/44493-
dc.description.abstract本篇論文針對行人辨識提出一個多特徵智慧型行人辨識系統,以達到提高行人辨識率的目的。此系統可主動在串列影像中找出移動中的物體,接著擷取物體的多種特徵,包刮梯度直方圖、Haar-like特徵、全域平均值、梯度影像,最後判斷此物體是否為行人。在本篇論文中採用雙層的類神經網路,包刮初級層與次級層,其中初級層類神經網路先針對單一特徵進行訓練,接著再將初級層匯集至次級層進行多特徵的統合訓練,此雙層架構的設計除了可提高行人辨識率外,亦嘗試減少訓練資料的使用,由實驗結果可知此雙層架構確實可提高行人辨識率,並且在較少的訓練資料下得到相近的準確率。zh_TW
dc.description.abstractThe thesis proposes an intelligent pedestrian recognition system to find out pedestrians from a sequence of images based on multi-features, including Histogram of Gradient, Haar-like feature, Global average and Gradient image. A two-staged neural network is adopted for the recognition system, which executes the training of single feature in the primary stage and then the training of multi-features in the secondary stage. The use of the two-staged neural network is not only to increase the accuracy rate but also to reduce the training data. From the experiment results, the two-staged neural network indeed improves the recognition performance and most importantly, it is workable in the case that a smaller amount of training data is used.en_US
dc.language.isoen_USen_US
dc.subject類神經網路zh_TW
dc.subject行人zh_TW
dc.subject辨識zh_TW
dc.subject雙層zh_TW
dc.subjectneural networken_US
dc.subjectpedestrianen_US
dc.subjectrecognitionen_US
dc.subjecttwo-stageen_US
dc.title智慧型多特徵行人辨識系統設計zh_TW
dc.titleintelligent multi-feature pedestrian recognition system designen_US
dc.typeThesisen_US
dc.contributor.department電控工程研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 259901.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。