完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 梁瑋哲 | en_US |
dc.contributor.author | Liang, Wei-Tse | en_US |
dc.contributor.author | 陳永平 | en_US |
dc.contributor.author | Cheng, Yon-Ping | en_US |
dc.date.accessioned | 2014-12-12T01:38:07Z | - |
dc.date.available | 2014-12-12T01:38:07Z | - |
dc.date.issued | 2009 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT079712599 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/44493 | - |
dc.description.abstract | 本篇論文針對行人辨識提出一個多特徵智慧型行人辨識系統,以達到提高行人辨識率的目的。此系統可主動在串列影像中找出移動中的物體,接著擷取物體的多種特徵,包刮梯度直方圖、Haar-like特徵、全域平均值、梯度影像,最後判斷此物體是否為行人。在本篇論文中採用雙層的類神經網路,包刮初級層與次級層,其中初級層類神經網路先針對單一特徵進行訓練,接著再將初級層匯集至次級層進行多特徵的統合訓練,此雙層架構的設計除了可提高行人辨識率外,亦嘗試減少訓練資料的使用,由實驗結果可知此雙層架構確實可提高行人辨識率,並且在較少的訓練資料下得到相近的準確率。 | zh_TW |
dc.description.abstract | The thesis proposes an intelligent pedestrian recognition system to find out pedestrians from a sequence of images based on multi-features, including Histogram of Gradient, Haar-like feature, Global average and Gradient image. A two-staged neural network is adopted for the recognition system, which executes the training of single feature in the primary stage and then the training of multi-features in the secondary stage. The use of the two-staged neural network is not only to increase the accuracy rate but also to reduce the training data. From the experiment results, the two-staged neural network indeed improves the recognition performance and most importantly, it is workable in the case that a smaller amount of training data is used. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 類神經網路 | zh_TW |
dc.subject | 行人 | zh_TW |
dc.subject | 辨識 | zh_TW |
dc.subject | 雙層 | zh_TW |
dc.subject | neural network | en_US |
dc.subject | pedestrian | en_US |
dc.subject | recognition | en_US |
dc.subject | two-stage | en_US |
dc.title | 智慧型多特徵行人辨識系統設計 | zh_TW |
dc.title | intelligent multi-feature pedestrian recognition system design | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 電控工程研究所 | zh_TW |
顯示於類別: | 畢業論文 |