完整後設資料紀錄
DC 欄位語言
dc.contributor.author李偉任en_US
dc.contributor.authorLee, Wei-Jenen_US
dc.contributor.author吳金典en_US
dc.contributor.authorWu, Chin-Tienen_US
dc.date.accessioned2014-12-12T01:40:02Z-
dc.date.available2014-12-12T01:40:02Z-
dc.date.issued2009en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079720502en_US
dc.identifier.urihttp://hdl.handle.net/11536/44983-
dc.description.abstract橢圓邊界值問題在凹角的地方會有奇異的行為,而這個奇異的行為對於用有限元素法離散的精確度會受到影響。對於給定Dirichlet 邊界條件的Poisson方程式和在定義域有凹角的情況之下,本論文利用一個奇異解的表示法,算出較準確的近似值,其中卡帕在工程上稱之為應力強度因子。這些量的精確計算在許多實際的工程問題上,是一門很重要的課題。zh_TW
dc.description.abstractElliptic boundary value problems on domain with corners have singular behavior near the corners. Such singular behavior affect the accuracy of the finite element method throughout the whole domain. For the Poisson equation with homogeneous Dirichlet boundary conditions defined on a polygonal domain with re-entrant corners, it is well known that the solution has the singular function u=w+ks representation ,where w is the regular part of the solution and s are known as singular functions that depend only on the corresponding re-entrant angles. Coefficients k known as the stress intensity factors in the context of mechanics can be expressed in terms of u by extraction formula, where s- are known as dual singular funciton. Accurate calculation of these quantities is of great importance in many practical engineering problems. Similar singular function representations hold for the solutions of interface,biharmonic,elasticity, and evolution problems in [1, 2].en_US
dc.language.isoen_USen_US
dc.subject多重網格zh_TW
dc.subject有限元素法zh_TW
dc.subject奇異解zh_TW
dc.subjectMultigriden_US
dc.subjectsingular elementen_US
dc.subjectsingular funcitonen_US
dc.subjectFEMen_US
dc.subjectAdaptive mesh-refinementen_US
dc.subjectcorner singularitiesen_US
dc.subjectstress intensity factorsen_US
dc.subjectcut-off functionen_US
dc.title多重網格與自調適法於Laplace 方程角奇異解的數值計算zh_TW
dc.titleMultigrid and Adaptive Methods for Computing Singular Solutions of Laplace Equation on Corner Domainsen_US
dc.typeThesisen_US
dc.contributor.department應用數學系數學建模與科學計算碩士班zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 050201.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。