标题: 基于类神经网路之蛋白质金属键结胺基酸预测
Protein Metal-Binding Residue Prediction based on Neural Networks
作者: 杨志贤
Chih-Hsien Yang
王启旭
Chi-Hsu Wang
电控工程研究所
关键字: 生物资讯学;类神经网路;金属蛋白;酵素;Bioinformatics;Neural Networks;Metalloprotein;Enzyme
公开日期: 2003
摘要: 传统上,结构生物学家利用物理实验的方式去了解金属蛋白 (与金属产生键结的蛋白质) 的特性,并藉由其立体结构与实验上的观察去推论酵素产生功能的原因及其反应机制。然而,大多数的蛋白质都已知其一级结构 (胺基酸序列组成) ,立体结构资讯却不如序列资讯来的普遍。再者,目前由序列资讯预测蛋白质立体结构的技术,也仍尚未
达到绝对可靠的阶段。

因此,本论文中提出,纯粹以蛋白质序列的资讯,使用类神经网路为主要核心的预测器,搭配滑动框架式特征撷取以及生物化学式特征编码的技术,对蛋白质金属键结胺基酸进行预测。针对生命系统中的四种主要金属 (钙、钾、镁与钠) 键结蛋白质中,在五等份的交叉验证中,均可达到九成以上的键结侦测敏感度且兼具极佳的准确度。
Traditionally, structural biologists used to investigate properties of metalloproteins(proteins which bind with metal ions) by physical means and interpret the function formation and reaction mechanism of enzyme by their structures and observation from experiments in vitro. Most of proteins have primary structures (amino acid sequence information) only;however, the 3-dimension structures are not always available. Moreover, the prediction from
protein sequence to structure is still not completely reliable so far.

Consequently, a direct analysis method to predict protein metal-binding amino acid residues only from its sequence information by neural network with sliding window-based
feature extraction and biochemical feature encoding techniques in this thesis. In four major bulk elements (Calcium, Potassium, Magnesium, and Sodium) in life system, the metal-binding residues are identified by proposed method with a binding sensitivity > 90% and nearly 100% accuracy under five fold cross validation.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT009112545
http://hdl.handle.net/11536/44990
显示于类别:Thesis


文件中的档案:

  1. 254501.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.