Full metadata record
DC FieldValueLanguage
dc.contributor.author吳姿慧en_US
dc.contributor.authorWu, Tzu-Huien_US
dc.contributor.author吳慶堂en_US
dc.contributor.authorWu, Ching-Tangen_US
dc.date.accessioned2014-12-12T01:40:27Z-
dc.date.available2014-12-12T01:40:27Z-
dc.date.issued2009en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079722505en_US
dc.identifier.urihttp://hdl.handle.net/11536/45061-
dc.description.abstract由 Föllmer, Wu, Yor, (1999) 中我們知道特定的隨機微分方程式的解會是一個布朗運動。在本論文中,我們討論有哪些隨機微分方程它們的解會是一個補償混合卜松過程。藉此,我們可以製造出新的補償混合卜松過程。同時,我們也討論一些隨機微分方程的解,觀察它們是不是碎形布朗運動。zh_TW
dc.description.abstractFrom Föllmer, Wu, Yor(1999) we know when the Brownian motion with nonzero linear drift is again a Brownian motion. In this thesis, instead of Brownian motion we discuss the case of compensated Poisson processes with nonzero. So we can construct new compensated compound Poisson processes. We also discuss whether the solutions of some particular form of stochastic differential equations are fractional Brownian motions.en_US
dc.language.isoen_USen_US
dc.subject補償混合卜松過程zh_TW
dc.subject碎形布朗運動zh_TW
dc.subjectcompensated compound Poisson processen_US
dc.subjectfractional Brownian motionen_US
dc.title針對補償混合卜松隨機過程或碎形布朗運動的橋zh_TW
dc.titleA Bridge with Respect to the Compensated Compound Poisson Process or the Fractional Brownian Motionen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 250501.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.