Full metadata record
DC FieldValueLanguage
dc.contributor.author陳泓勳en_US
dc.contributor.authorChen, Hung-Shiunen_US
dc.contributor.author林松山en_US
dc.contributor.authorLin, Song-Sunen_US
dc.date.accessioned2014-12-12T01:40:30Z-
dc.date.available2014-12-12T01:40:30Z-
dc.date.issued2009en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079722526en_US
dc.identifier.urihttp://hdl.handle.net/11536/45080-
dc.description.abstract這個研究是關於用邊著色的正三角形與倒三角形拼湊整個平面。如果對每個正三角形與倒三角形相對應的邊都有相同的顏色,則這兩個三角形可以放在相鄰的位置。在這篇論文,我們考慮邊上著兩色與三色的三角形。我們研究的問題為:是否任意可佈滿整個平面的正三角形集合必存在週期性的拼法覆蓋整個平面。我們使用演算法來研究這個問題,然後藉由電腦計算得到結果。最後,這篇論文的主要結果為:在著兩色及三色的前提下,如果整個平面可以被邊著色的三角形拼滿,則整個平面就存在週期性的拼法覆蓋整個平面,反之亦然。zh_TW
dc.description.abstractThis investigation is about tiling the whole plane with upper triangles and lower triangles which have colors on edges. Upper and lower triangles can be placed side by side if each of the intersections has the same color. In this paper, we consider upper and lower triangle with two and three colors on edges. The problem we studied is that: any set of triangle that can fill with the whole plane whether it can cover the whole plane periodically. We use an algorithm to do the problem and get the result by computers. Finally, the main result of this paper is that the whole plane can be tiling by triangle with two and three colors if and only if the whole plane is covered by the local pattern periodically.en_US
dc.language.isoen_USen_US
dc.subject花樣生成zh_TW
dc.subjectpattern generationen_US
dc.subjectedge-coloringen_US
dc.subjectdecidability problemen_US
dc.title三角形邊著色的決定性問題zh_TW
dc.titleDecidability Problems of Triangle Edge-coloringen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
Appears in Collections:Thesis


Files in This Item:

  1. 252601.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.