标题: | 以碳、氮、矽原子及乙烯基为共价桥梁所形成之七与五环熔合多电子平面分子:合成、鉴定及其共轭高分子于有机太阳能电池与有机场效电晶体之应用 Carbon, Nitrogen, Silicon and Ethylene-bridged Multifused Heptacyclic and Pentacyclic Electron-rich Arenes: Synthesis, Characterization and Their Conjugated Polymers for Organic Field-Effect Transistors and Photovoltaic Applications |
作者: | 吴忠宪 Wu, Jhong-Sian 许千树 Hsu, Chain-Shu 应用化学系硕博士班 |
关键字: | 共轭高分子;高分子太阳能电池;场效电晶体;conjugated polymers;polymer solar cells;field effect transistors |
公开日期: | 2011 |
摘要: | 在本论文中,我们将双噻吩咔唑 (dithienocarbazole) 外围噻吩的3号位置和中心咔唑的3与6号位置利用碳、氮、矽原子以及乙烯基为共价桥梁形成七环熔合多电子分子 (dithienocyclopenta-carbazole (DTCC),dithienopyrrolo-carbazole (DTPC), dithienosilolo-carbazole (DTSC) 与 dithienobenzo-carbazole (DTBC)),为了改善薄膜态下分子间的作用力,DTCC 的苯环侧链被更具有柔软性的正辛烷所取代而形成dithienocyclopenta-carbazole (DTCC-C8),此外,以中心为芴 (fluorene) 的dithienocyclopenta-fluorene (DTCF) 也使用类似的方式来合成,在多环单体的合成上,以碳原子为价桥之 DTCC、DTCC-C8 与 DTCF 的关键合成步骤为 Friedel-Craft反应,而以乙烯基为价桥的DTBC 则主要是利用一步骤的多重Suzuki-Miyaura cross-coupling 来合成,另一方面,以矽与氮原子为价桥之 DTSC 与 DTPC 的关键合成步骤分别为 lithiation/nucleophilic addition 与一步骤的多重钯催化 Buchwald–Hartwig 反应,此后,将这些新颖的多电子单体与缺电子受体 (benzothiadiazole (BT) 或 dithienylbenzothiadiazole (DTBT)) 一起共聚成新的给体-受体交错型共轭高分子。 相较于非熔合高分子 poly(2,7-fluorene-alt-dithienylbenzothiadiazole) (PFDTBT) 与 poly(2,7-carbazole-alt-dithienylbenzothiadiazole) (PCDTBT),含有阶梯状平面分子 DTCF与 DTCC 之 poly(dithienocyclopenta-fluorene-alt-benzothiadiazole) (PDTCFBT) 与poly(dithienocyclopenta-carbazole-alt-benzothiadiazole) (PDTCCBT) 表现出较红位移的光学吸收与较窄的光学能隙,将材料依照此结构ITO/PEDOT:PSS/polymer:PC71BM/Ca/Al 制作成太阳能电池元件后,PDTCCBT 有较高的光电转换效率3.7%,此外,修饰过侧链的 DTCC-C8 其高分子 poly(dithienocyclopenta-carbazole-alt-benzothiadiazole) PDTCCBT-C8 表现出较强的分子间堆叠,因此其光学吸收较为红位移,并且在元件方面也表现出较佳的效率 4.6% (开路电压 0.74 V,短路电流 10.3 mA/cm2,填充因子 60.0%),另一方面,由于在 DTSC 单体中的噻咯 (silole) 拥有拉电子的能力,所以导致了高分子 poly(dithienosilolo-carbazole-alt-benzothiadiazole) (PDTSCBT) 拥有较低的 HOMO 能阶,反之,DTPC 拥有推电子能力的吡咯 (pyrrole),其高分子poly(dithienopyrrolo-carbazole-alt-benzothiadiazole) (PDTPCBT) 的HOMO 能阶则相对较高,而其光学能隙之大小顺序为:PDTSCBT (1.83 eV) > PDTCCBT-C8 (1.64 eV) > PDTPCBT (1.50 eV),这样结果显示出七环熔合多电子单体之推电子能力强弱为DTPC > DTCC-C8 > DTSC,太阳能电池元件方面,PDTSCBT 表现出最佳的光电转换效率5.2%,并且拥有相当大的开路电压0.82 V,我们也将单体 DTBC 与dithienylbenzothiadiazole 共聚成交错型共轭高分子poly(dithienobenzo-carbazole-alt-dithienylbenzothiadiazole) (PDTBCDTBT),其元件表现出相当高的5.5% 效率 (开路电压 0.79V,短路电流 10.87 mA/cm2,填充因子 64.5%),藉由将三氧化钼 (molybdenum oxide,MoO3) 当做缓冲层,元件效率可以进一步的改进为6.2% (开路电压 0.79V,短路电流 11.52 mA/cm2,填充因子 68.2%),在五环熔合多电子单体方面,单一异构物且呈 angular 形状的 anthradithiophene (aADT) 也被合成出来,此后,再与ditheniodiketopyrrolopyrrole 和 bithiophene 做共聚分别形成高分子poly(anthradithiophene-alt-dithienyldiketopyrrolopyrrole) (PaADTDPP) 与 poly(anthradithiophene-alt-bithiophene) (PaADTT),有结晶性的 PaADTT 表现出高的电洞迁移率 (7.9 × 10-2 cm2V-1s-1) 与开关比 (1.1 × 107),而以 PaADTDPP 为材料的太阳能电池元件则有3.66%的转换效率,藉由添加添加剂1-chloronaphthalene (CN),可以将效率更进一步的提升到4.24%,此光电转换效率则是在以含有 anthradithiophene 的高分子之太阳能电池中最高效率的一个,最后,由于我们合成的多环单体都具有共平面且刚硬的特性,因此是相当适合用来制作成有机场效电晶体,PDTSCBT、PDTCCBT-C8 与PaADTDPP 分别表现出高的电洞迁移率0.073、0.110 与 0.073 cm2 V-1s-1。 In this research, the 3-positions of the two outer thiophenes of dithienocarbazole unit are covalently fastened to the 3,6-positions of the central 2,7-carbazole cores by carbon, nitrogen, silicon and ethylene bridges, leading to a new class of multifused heptacyclic units dithienocyclopenta-carbazole (DTCC), dithienopyrrolo-carbazole (DTPC), dithienosilolo-carbazole (DTSC) and dithienobenzo-carbazole (DTBC), respectively. To improve the intermolecular interactions in solid state, the original 4-octoxyphenyl side chains on the DTCC unit are replaced with the more flexible octyl groups to furnish a dithienocyclopenta-carbazole (DTCC-C8) unit. Structurally analogous to DTCC, carbon-bridged dithienocyclopenta-fluorene (DTCF) has also been synthesized but using fluorene as the central core. Friedel-Craft cyclization is the key step for the synthesis of carbon-bridged DTCC, DTCC-C8 and DTCF units, while a one-pot benzannulation via multiple Suzuki-coupling is utilized to efficiently synthesize ethylene-bridge DTBC. Silicon-bridge DTSC and nitrogen-bridged DTPC units were also successfully constructed by lithiation/nucleophilic addition and one-pot double palladium-catalyzed amination via Buchwald–Hartwig reaction, respectively. These newly designed electron-rich monomers were copolymerized with benzothiadiazole (BT) or dithienylbenzothiadiazole (DTBT) units to afford a range of new donor-acceptor alternating copolymers. Compared to nonfused poly(2,7-fluorene-alt-dithienylbenzothiadiazole) (PFDTBT) and poly(2,7-carbazole-alt-dithienylbenzothiadiazole) (PCDTBT), poly(dithienocyclopenta-fluorene-alt-benzothiadiazole) (PDTCFBT) and poly(dithienocyclopenta-carbazole-alt-benzothiadiazole) (PDTCCBT) containing ladder-type heptacyclic structures (DTCF and DTCC) with forced planarity exhibited red-shift absorption spectra and narrow band gaps. By fabricating conventional device with ITO/PEDOT:PSS/polymer:PC71BM/Ca/Al configuration, PDTCCBT exhibit a higher power conversion efficiency of 3.7%. Due to the side chains modification of DTCC-C8 unit to induce stronger interchain interactions, poly(dithienocyclopenta-carbazole-alt-benzothiadiazole) PDTCCBT-C8 exhibited more red-shift absorption and higher efficiency of 4.6% (Voc = 0.74 V,Jsc = 10.3 mA/cm2,FF = 60.0%) than PDTCCBT. On the other hand, the silole units in DTSC possess electron-accepting ability that lowers the highest occupied molecular orbital (HOMO) energy levels of poly(dithienosilolo-carbazole-alt-benzothiadiazole) (PDTSCBT), whereas stronger electron-donating ability of the pyrrole moiety in DTPC increases the HOMO energy levels of poly(dithienopyrrolo-carbazole-alt-benzothiadiazole) (PDTPCBT). The optical band gaps are in the following order: PDTSCBT (1.83 eV) > PDTCCBT-C8 (1.64 eV) > PDTPCBT (1.50 eV). This result indicates that the donor strength of the heptacyclic arenes is in the order: DTPC > DTCC-C8 > DTSC. The bulk heterojunction photovoltaic device using PDTSCBT as the p-type material delivered a promising efficiency of 5.2% with an enhanced Voc of 0.82 V. For DTBC, the photovoltaic device based on the poly(dithienobenzo-carbazole-alt-dithienylbenzothiadiazole) (PDTBCDTBT) possessing highly rigid and coplanar structure exhibited an PCE of 5.50% (Voc of 0.79 V, a Jsc of 10.87 mA/cm2, a FF of 64.5%). By using MoO3 as a buffer layer, the performance of the device was further improved to a high PCE of 6.2% with a Voc of 0.79 V, a Jsc of 11.52 mA/cm2, a FF of 68.2%. For the pentacyclic arene, an isomerically pure anti-anthradithiophene (aADT) arranged in an angular shape was developed. This newly designed 2,8-stannylated aADT monomer is copolymerized with a ditheniodiketopyrrolopyrrole unit and a bithiophene unit, respectively, to furnish poly(anthradithiophene-alt-dithienyldiketopyrrolopyrrole) (PaADTDPP) and thiophene-rich poly(anthradithiophene-alt-bithiophene) (PaADTT). PaADTT with crystalline nature achieve a high FET mobility of 7.9 × 10-2 cm2V-1s-1 with an on-off ratio of 1.1 × 107. The photovoltaic device based on the PaADTDPP exhibit a PCE of 3.66%. By adding 1.5 vol.% 1-chloronaphthalene (CN) as a processing additive, the PCE can be improved to 4.24%. The efficiency is the best one among these devices based on the polymers containing anthradithiophene. Finally, in view of the coplanar geometries and rigid structures of these ladder-type arenes, it is highly desirable to utilize these polymers for organic field-effect transistors (OFETs). PDTSCBT, PDTCCBT-C8 and PaADTDPP exhibited the high hole mobilities 0.073, 0.110 and 0.073 cm2 V-1s-1, respectively. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079725533 http://hdl.handle.net/11536/45183 |
显示于类别: | Thesis |