标题: | 使用空间相关性的高斯混合模型对PET/CT影像作分割 Segmentation of PET/CT Images Using Spatial Dependence in Gaussian Mixture Model |
作者: | 陈亮勋 Chen, Liang-Xun 卢鸿兴 Lu, Herry Horng-Shing 统计学研究所 |
关键字: | 高斯混合模型;空间相关性;PET/CT;影像分割;Gaussian mixture model;Spatial dependence;PET/CT;Image segmentation |
公开日期: | 2009 |
摘要: | PET影像中,高亮度的区块常被视为疑似肿瘤产生的地方。若能将PET影像中的肿瘤部位精确的分割出来,将会对医生的诊疗有很大的帮助。近年来,由于PET/CT的发明,它结合了PET 和CT的优点,能将肿瘤细胞的活动状况及位置融合在同一张影像中,使医生对肿瘤诊断有更进一步的发展。而本研究在分割PET影像的同时也加进了CT影像的资讯,目的是希望能将肿瘤细胞更精确的分割出来。 我们使用Gaussian mixture model (GMM) 对PET和CT的融合影像作分割。此外,我们考虑了PET和CT的相关性,使用一个二维的GMM对PET/CT影像作分割。我们还在GMM中加入空间相关性,将影像的中每一个像素都考虑它们的邻近点,然后使用一个多维的GMM模型去配适。这些方法的结果均较单对PET影像作分割的结果为佳。 The specific brightened regions of PET images are the suspected regions of tumor. Segmenting the region of tumor on PET images will be very helpful to doctors. In recent years, the invention of Positron emission tomography/computed tomography (PET/CT) has allowed combination of the advantages of PET and CT: namely, that the activities and location of tumor cells can be merged in one image. This merged images provides significant progress for doctors diagnosing tumors. In this study, the information of CT is used when segmenting the PET images. The aim is to enhance accuracy of segmenting the regions of tumor. The fusion images of PET and CT are segmented by Gaussian mixture model (GMM). In addition, a two-dimensional GMM is used to fit the PET and CT image data by considering the correlation of PET and CT. The spatial dependence is also considered in a GMM. Our approach is to consider points surrounding each pixel to fit a multi-dimensional GMM to the data. These methods all have better performance than the result of only implementing segmenting PET images in this study. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079726514 http://hdl.handle.net/11536/45244 |
显示于类别: | Thesis |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.