Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 林弘哲 | en_US |
dc.contributor.author | Lin, Hong-Jhe | en_US |
dc.contributor.author | 黃冠華 | en_US |
dc.contributor.author | Huang, Guan-Hua | en_US |
dc.date.accessioned | 2014-12-12T01:41:08Z | - |
dc.date.available | 2014-12-12T01:41:08Z | - |
dc.date.issued | 2009 | en_US |
dc.identifier.uri | http://140.113.39.130/cdrfb3/record/nctu/#GT079726519 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/45250 | - |
dc.description.abstract | 潛在群體模型中的參數估計可以利用群體分析的方法。但是在高維度的資料下,群體分析中的變數選擇問題就更顯重要。這裡,我們發展了群體方法中的交替k均值分群,並利用此想法先找出干擾變數以及此模型中最佳的潛在族群體分群,再利用分群後的結果對其他參數做估計。我們並針對潛在群體模型創造一種分類規則。這個程序不但能完整的分析複雜疾病,對於基因資料分析中也有極大的幫助。我們將分析實際的資料來證實這種方法的優點。 | zh_TW |
dc.description.abstract | Parameters in latent class analysis could be estimated by some clustering methods. But in the high-dimensional data, variable selection in cluster analysis is an important problem. Here, we propose an alternate k-means clustering method to first distinguish clustering and noisy surrogates and then estimate the parameters in the latent class model. We also create a classification rule, based on the finite mixture model. This classification procedure can explicitly recognize the heterogeneous nature of the complex disease, which makes it perfect in analyzing high-throughput genomic data. The real data analysis demonstrates the advantages of our proposed methods. | en_US |
dc.language.iso | zh_TW | en_US |
dc.subject | 潛在群體分析 | zh_TW |
dc.subject | 高維度資料 | zh_TW |
dc.subject | 變數選擇 | zh_TW |
dc.subject | 交替k均值 | zh_TW |
dc.subject | 分類 | zh_TW |
dc.subject | 微陣列 | zh_TW |
dc.subject | latent class analysis | en_US |
dc.subject | high-dimensional data | en_US |
dc.subject | variable selection | en_US |
dc.subject | alternate k-means | en_US |
dc.subject | classification | en_US |
dc.subject | microarray | en_US |
dc.title | 藉由交替K均值分群程序對潛在群體做預測 | zh_TW |
dc.title | Prediction of Underlying Latent Classes via Alternate K-means Clustering Algorithms | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 統計學研究所 | zh_TW |
Appears in Collections: | Thesis |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.