完整後設資料紀錄
DC 欄位語言
dc.contributor.author林弘哲en_US
dc.contributor.authorLin, Hong-Jheen_US
dc.contributor.author黃冠華en_US
dc.contributor.authorHuang, Guan-Huaen_US
dc.date.accessioned2014-12-12T01:41:08Z-
dc.date.available2014-12-12T01:41:08Z-
dc.date.issued2009en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079726519en_US
dc.identifier.urihttp://hdl.handle.net/11536/45250-
dc.description.abstract潛在群體模型中的參數估計可以利用群體分析的方法。但是在高維度的資料下,群體分析中的變數選擇問題就更顯重要。這裡,我們發展了群體方法中的交替k均值分群,並利用此想法先找出干擾變數以及此模型中最佳的潛在族群體分群,再利用分群後的結果對其他參數做估計。我們並針對潛在群體模型創造一種分類規則。這個程序不但能完整的分析複雜疾病,對於基因資料分析中也有極大的幫助。我們將分析實際的資料來證實這種方法的優點。zh_TW
dc.description.abstractParameters in latent class analysis could be estimated by some clustering methods. But in the high-dimensional data, variable selection in cluster analysis is an important problem. Here, we propose an alternate k-means clustering method to first distinguish clustering and noisy surrogates and then estimate the parameters in the latent class model. We also create a classification rule, based on the finite mixture model. This classification procedure can explicitly recognize the heterogeneous nature of the complex disease, which makes it perfect in analyzing high-throughput genomic data. The real data analysis demonstrates the advantages of our proposed methods.en_US
dc.language.isozh_TWen_US
dc.subject潛在群體分析zh_TW
dc.subject高維度資料zh_TW
dc.subject變數選擇zh_TW
dc.subject交替k均值zh_TW
dc.subject分類zh_TW
dc.subject微陣列zh_TW
dc.subjectlatent class analysisen_US
dc.subjecthigh-dimensional dataen_US
dc.subjectvariable selectionen_US
dc.subjectalternate k-meansen_US
dc.subjectclassificationen_US
dc.subjectmicroarrayen_US
dc.title藉由交替K均值分群程序對潛在群體做預測zh_TW
dc.titlePrediction of Underlying Latent Classes via Alternate K-means Clustering Algorithmsen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 651901.pdf
  2. 651901.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。