标题: | B2Classifier –一个适用于生物学资料之二元分类的整合型机器学习网站 B2Classifier - an integrated machine learning web server applied to the binary classification of biological data |
作者: | 庄家荣 Chuang, Chia-Jung 罗惟正 Lo, Wei-Cheng 生物资讯及系统生物研究所 |
关键字: | 二元分类器;建模网站;类神经网路;支持向量机;粒子群演算法;IF值;B2Classifier;binary classifiers;artificial neural network;ANN;Fast Artificial Neural Network Library;FANN;support vector machine;SVM;random forest;RF;hierarchical feature integration procedure;HI;particle swarm optimization;PSO;IFtree;integrated feature |
公开日期: | 2012 |
摘要: | B2Classifier是一个用来协助使用者建立二元分类器的建模网站。它具备简易操作、免完装且可合并多类不同训练模型的特性,能让不具备撰写程式能力的使用者亦得以利用此辅助建模工具建立二元分类器。它提供四种训练模型,分别是artificial neural network (ANN), support vector machine (SVM), random forest (RF)和hierarchical feature integration procedure (HI)。其中 ANN 训练模型是利用Fast Artificial Neural Network Library实作,使用者可以利用简单的网页画面,勾选不同参数来建构出ANN模型。SVM是以LIBSVM完成,RF则是利用C4.5演算法建构。最后一项HI训练模型,是透过建立IFtree来进行预测。HI是一种让使用者以自身知识来进行特征选择的方法,不同以往的特征选择法是使用近似最佳法。HI让使用者以其专业知识对特征做分群,接着自动化地透过粒子群演算法 (PSO, particle swarm optimization) 来决定每类特征群的权重。IFtree依据每个节点上的权重计算出IF (integrated feature) 值,最后利用根结点的IF值进行预测。 B2Classifier is a web system for creating binary classifiers. It has a user-friendly interface. Users do not need to install any particular software before using B2Classifier. In addition, B2Classifier provides several different machine learning methods and the classification powers of these methods can be easily integrated. Four machine learning methods are implemented in the B2Classifier, including the artificial neural network (ANN), support vector machine (SVM), random forest (RF) and the hierarchical feature integration procedure (HI). The ANN method is implemented by utilizing the Fast Artificial Neural Network Library. Users can use a simple graphic interface to set parameters and create ANN models. The SVM module of B2Classifier recruits the LIBSVM package. The RF method is implemented based on the C4.5 decision tree package. The HI method relies on an IFtree to perform classifications. HI is a knowledge-based machine learning method and is very different from traditional heuristic methods. It allows users to group input features according to their professional knowledge about the features, and then B2Classifier automatically uses a PSO (particle swarm optimization) algorithm to integrate the grouped features with optimized weights. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079751512 http://hdl.handle.net/11536/45821 |
显示于类别: | Thesis |