标题: 半导体测试业之员工离职预测研究-以K公司为例
Employee Turnover Prediction for Semiconductor Testing Industries: A Case Study of K Company
作者: 翁琼雯
Weng, Chiung-Wen
刘敦仁
Liu, Duen-Ren
管理学院资讯管理学程
关键字: 人力资源;资料探勘;决策树;关联规则;离职探勘;Human Resources;Data mining;Decision Tree;Turnover Prediction
公开日期: 2011
摘要: 人力资源是对企业最重要的资产,人力的组成结构将影响企业的相对竞争力,经过2008年的全球性不景气,企业为了降低成本进行人力的重整,因此可能造成员工的向心力和投入程度大幅下降。
除了如何在不景气时保留或培养未来所需要的人力,为即将到来的回春景气做准备是对企业重要课题,如何预测人员异动的状态,进行离职的预测及预防,并及时采取优秀人才的留才行动是重要的。
本研究针对企业之人力资源管理系统资料,包含人员基本资料、考勤资料、薪资资料及晋升异动资料进行基本的分类及探勘作业。分类是透过资料属性特征相似度进行分类;探勘机制则是对以上四种已整理的资料进行探勘分析,使用演算法包含“决策树演算法”及“关联规则演算法”。
实验结果显示,“关联规则演算法”的预测结果准确机机率较高,对于半导体测试业资料模型之员工离职预测有较好的表现。
Human Resources are the most important asset of the enterprise, and the Manpower composition will affect the relative competitiveness of enterprises. After the global recession in 2008, the manpower restructuring for reducing the cost may cause the centripetal force and commitment of employees substantially decline. Turnover implies the endeavor to find another job. For companies, it means an increase in personnel expense. So, it is very important that how to predict employee turnover intention, and execute the policies for resignation inclining forecast and brain drain prevention.
This study uses human resource management system, including personnel characteristics, attendance status information and the promotion and salary information, for the basic classification and data mining operations. Decision tree algorithm and Association rule algorithm are adopted to build the prediction models for employee Turnover prediction. The experimental results show that the association rules approach can have higher accuracy of the predictions.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079764518
http://hdl.handle.net/11536/46250
显示于类别:Thesis