标题: | 智慧型多特征人脸侦测系统设计 Intelligent Multi-feature Face Detection System Design |
作者: | 黄文俊 Huang, Wen-Jun 陈永平 Chen, Yon-Ping 电控工程研究所 |
关键字: | 类神经网路;人脸侦测;neural network;face detection |
公开日期: | 2010 |
摘要: | 本篇论文针对人脸侦测提出一个智慧型多特征侦测系统,以达到提高人脸侦测率的目的。此系统可主动在串列影像中找出人类视觉上判断人脸的两个重要特征,即肤色及轮廓,其中肤色判断的结果可先视为可能的人脸区域。在本篇论文中,与一般人脸侦测系统不同之处,主要在于肤色撷取、轮廓撷取与人脸辨别等三方面,皆是经由监督式学习的类神经网路设计完成,以达到人脸侦测系统智慧化的目的。此外针对人脸辨别,本论文将可能的人脸区域结合肤色及轮廓特征,先取得区域肤色影像及区域轮廓影像再做不同的影像处理,包括影像联集、水平回旋积、及影像相乘三种方式,最后经由类神经网路办别是否为人脸。由实验结果可知多特征的人脸辨别率可优于单一特征的类神经网路架构,其中又以影像联集为最优,可提升辨别率约3%。 This thesis proposes an intelligent face detection system to find out faces from a sequence of images based on the skin color and edge, two important features in human vision for face detection. The system first searches the potential face regions from an image via the skin color. Different to the conventional face detection, the skin color extraction, edge extraction, and face classification are all implemented by neural networks under supervised learning. Moreover, with the use of skin feature image and edge feature image there are three combined methods developed for face classification, named as Union-NN, Convolution-NN and Multiply-NN. From the experiment results, it is clear that neural networks of multi-feature could improve the recognition rate when compared with single-feature. Besides, the Union-NN has the best recognition rate in face detection. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079812603 http://hdl.handle.net/11536/46959 |
显示于类别: | Thesis |