標題: | 隨機缺陷在16奈米金屬閘高介電場效應電晶體特性影響之研究 Effects of Random Interface Traps and Trapping/De-Trapping on Electrical Characteristics of 16 nm High-k/Metal Gate MOSFETs |
作者: | 余俊諺 Yiu, Chun-Yen 李義明 Li, Yiming 電信工程研究所 |
關鍵字: | 介面缺陷;高介電場效應電晶體;靜態擾動;動態特性;Interface Traps;High-k/Metal Gate;Fluctuations;Dynamic Operation |
公開日期: | 2011 |
摘要: | 金屬閘極與高介電係數閘極絕緣材料的使用使得摩爾定律能夠延續,且已
成為奈米電晶體元件開發不可或缺之重要技術。然而使用金屬閘極與高介電係
數閘極絕緣材料時,由於在高介電係數閘極絕緣材料裡一系列氧空缺的反應,
在通道及高介電係數閘極絕緣材料的介面會有缺陷陷阱的產生,他會劣化元件
的特性並導致臨界電壓漂移,此缺陷的數量及位置不固定,將帶來新的擾動來
源。本論文提出了有效的缺陷模擬方法,探討這擾動源對於奈米元件特性的影
響。本研究應用蒙地卡羅方法三維度電晶體元件模擬方式,完全隨機地將產生
的二維缺陷分給每一個元件,藉此分析缺陷在通道及高介電係數閘極絕緣材料
的介面所引起的現象,並分析了隨機缺陷的數量以及位置對於臨界電壓,飽和
與截止電流,最大電導,電晶體輸出電阻,汲極導致能障下降,閘極電容以及
截止頻率的特性擾動。不僅只有隨機缺陷產生在通道及高介電係數閘極絕緣材
料的介面;研究上,進一步同時考慮了隨機摻雜以及缺陷分別產生在通道,以
及通道與高介電係數閘極絕緣材料的介面對於16 奈米金屬奈米閘極金氧半場
效電晶體特性的特性擾動。
除此之外,動態操作下的金屬奈米閘極金氧半場效電晶體的可靠度是一個
重要的議題,此問題包括臨界電壓的漂移及飽合電流的劣化等等。研究上應用
蒙地卡羅元件模擬方式,完全隨機地產生缺陷在高介電係數閘極絕緣材料中,
用來分析在動態操作下所引起的臨界電壓漂移以及汲極電流的變化。研究上探金屬閘極與高介電係數閘極絕緣材料的使用使得摩爾定律能夠延續,且已
成為奈米電晶體元件開發不可或缺之重要技術。然而使用金屬閘極與高介電係
數閘極絕緣材料時,由於在高介電係數閘極絕緣材料裡一系列氧空缺的反應,
在通道及高介電係數閘極絕緣材料的介面會有缺陷陷阱的產生,他會劣化元件
的特性並導致臨界電壓漂移,此缺陷的數量及位置不固定,將帶來新的擾動來
源。本論文提出了有效的缺陷模擬方法,探討這擾動源對於奈米元件特性的影
響。本研究應用蒙地卡羅方法三維度電晶體元件模擬方式,完全隨機地將產生
的二維缺陷分給每一個元件,藉此分析缺陷在通道及高介電係數閘極絕緣材料
的介面所引起的現象,並分析了隨機缺陷的數量以及位置對於臨界電壓,飽和
與截止電流,最大電導,電晶體輸出電阻,汲極導致能障下降,閘極電容以及
截止頻率的特性擾動。不僅只有隨機缺陷產生在通道及高介電係數閘極絕緣材
料的介面;研究上,進一步同時考慮了隨機摻雜以及缺陷分別產生在通道,以
及通道與高介電係數閘極絕緣材料的介面對於16 奈米金屬奈米閘極金氧半場
效電晶體特性的特性擾動。
除此之外,動態操作下的金屬奈米閘極金氧半場效電晶體的可靠度是一個
重要的議題,此問題包括臨界電壓的漂移及飽合電流的劣化等等。研究上應用
蒙地卡羅元件模擬方式,完全隨機地產生缺陷在高介電係數閘極絕緣材料中,
用來分析在動態操作下所引起的臨界電壓漂移以及汲極電流的變化。研究上探
討了不同的操作頻率以及操作週期對於電晶體臨界電壓漂移的影響,發現電晶
體臨界電壓漂移會隨著操作頻率的降低以及操作週期的提高而變大。另一方
面,研究上發現隨機缺陷產生在高介電係數閘極絕緣材料中的數量及位置,對
於電晶體臨界電壓的漂移也有著不可忽略的影響;研究上,發現當高介電係數
閘極絕緣材料中的缺陷靠近源極與通道表面時,對於電晶體所造成的動態操作
最為不穩定。
總之,本論文分析了缺陷在矽通道及HfO2高介電係數閘極絕緣材料介面,
以及同時分析了在矽通道及HfO2高介電係數閘極絕緣材料介面的隨機摻雜和
缺陷對於電晶體的影響,並進一步探討了電晶體高介電係數閘極絕緣材料
中缺陷在動態操作下的特性可靠度問題;此論文結果對於下世代電晶體特性分
析極有助益。 High-κ/metal gate technology has been recently recognized as the key to sub-45-nanometer transistor fabrication because of the improvement of device performance and reduction of intrinsic parameter fluctuation. However, the use of high-κ/metal gate device introduced new sources of variation. The generated traps at the interface of high-κ/silicon, a new random fluctuation source, is associated with the oxygen vacancies in the interface of HfO2/silicon caused by its interaction with the overlaying high-k/metal stack. It will degrade the of device performance and induce threshold voltage (Vth) variation. In this thesis, we study the DC/AC and transfer characteristic fluctuation in 16-nm-gate high-κ/metal gate devices and circuit induced by random interface traps at high-κ/silicon interface. Totally random generated devices with two-dimensional interface traps at HfO2/silicon are incorporated into three-dimensional quantum-mechanically corrected device simulation. Effects of random ITs number and position on device characteristic fluctuations inclduing threshold voltage, on-/off-state current, maximum transconductance, output resistance of transistor, drain-induced barrier lowering, gate capacitance, and cutoff frequency are examined. Not only interface traps, we also investigate the effects of combined random dopants and interface traps on electrical characteristics of 16-nm high-κ/metal gate devices. Two-dimensional ITs at HfO2/silicon film interface and three-dimensional random dopants inside the silicon channel are simultaneously incorporated into an experimentally validated three-dimensional device simulation to quantify the random-dopants-and-interface-traps-fluctuated characteristics. Additionally, one of the main issues for high-κ/metal gate devices is the charge trapping characteristics under dynamic operation. It remains an important reliability issue which causes the Vth shift and drive current degradation. Therefore, we examine the effects of trapping/de-trapping on Vth reliability in high-κ/metal gate devices by an experimentally validated device simulation. Totally random generated devices with two-dimensional bulk traps in HfO2 layer are incorporated into quantum-mechanically corrected device simulation. We investigate the influences of frequency and duty cycle dependences on the device Vth shift. The Vth shift increases as the frequency decreases or duty cycle increases. On the other hand, effects of random bulk trap’s number and position on device Vth shift due to trapping and de-trapping is also studies. In summary, we have studied the influences of the 2D interface traps and combined 2D interface traps and 3D random dopants induced characteristics fluctuations on 16-nm-gate devices and digital circuit. Under dynamic operation, the effects of the random 2D bulk traps which is positioned in the HfO2 region on the 16-nm-gate MOSFETs with TiN/HfO2 have also been discussed and simulated. We believe the results of this study is useful for sub-22-nm technology node transistor. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079813616 http://hdl.handle.net/11536/47096 |
Appears in Collections: | Thesis |