完整後設資料紀錄
DC 欄位語言
dc.contributor.author曾至均en_US
dc.contributor.authorTzeng, Chih-Chunen_US
dc.contributor.author石至文en_US
dc.contributor.author王信華en_US
dc.contributor.authorShih, Chih-Wenen_US
dc.contributor.authorWang, Shin-Hwaen_US
dc.date.accessioned2014-12-12T01:49:35Z-
dc.date.available2014-12-12T01:49:35Z-
dc.date.issued2010en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT079822506en_US
dc.identifier.urihttp://hdl.handle.net/11536/47506-
dc.description.abstract本篇論文主要是探討一類三次非線性正定問題的全分支性及正解的確切個數。在 適當的條件下,我們利用時間映射(time map)的方法來研究此一問題,並且證明在不同的演化參數下會有不同的分支曲線圖,進一步來說這些分支曲線基本上有兩種,不是單調曲線就是我們所稱的 S 型曲線zh_TW
dc.description.abstractWe study the global bifurcation and exact multiplicity of positive solutions of Where λ,ε>0 are two bifurcation parameters, and σ,ρ>0, 0<κ √σρ are constants. We prove the global bifurcation of bifurcation curves for varying ε>0 by developed some time-map techniques. More precisely, we prove that, for anyσ,ρ>0, 0<κ √σρ, there exists ε ̃>0 such that, on the (λ,‖u‖_∞ )-plane, the bifurcation curve is S-shaped for 0<ε<ε ̃ and is monotone increasing forε ε ̃. (We also prove the global bifurcation of bifurcation curves for varyingλ>0.) Thus we are able to determine the exact number of positive solutions by the values of ε andλ. Our results extend those of Hung and Wang ( Trans. Amer. Math. Soc., accepted to appear under minor revision ) from κ 0 to 0<κ √σρ.en_US
dc.language.isozh_TWen_US
dc.subject全分枝姓zh_TW
dc.subject確切正解個數zh_TW
dc.subject正定問題zh_TW
dc.subjectS 型取縣zh_TW
dc.subject時間映射zh_TW
dc.subjectglobal bifurcationen_US
dc.subjectexact multiplicityen_US
dc.subjectpositive solutionsen_US
dc.subjectpositone problemen_US
dc.subjectS-shaped bifurcation curveen_US
dc.subjecttime mapen_US
dc.title一類三次非線性正定問題全分枝性及確切正解個數zh_TW
dc.titleGlobal Bifurcation and Exact Multiplicity of Positive Solutions for a Positone Problem with Cubic Nonlinearityen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文


文件中的檔案:

  1. 250601.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。